CERUS X-DRVVE

Installation and Operation Manual
Firmware Version 1.2

CERUS ${ }^{\ominus}$ X-DRIVE INSTALLATION AND OPERATION MANUAL

Firmware Version 1.2
Franklin Electric Co., Inc.

COPYRIGHT INFORMATION

Franklin Electric

Franklin Electric
Technical Publications
9255 Coverdale Road
Fort Wayne, IN 46809

Copyright © 2022, Franklin Electric, Co., Inc. All rights reserved.

The entire contents of this publication are copyrighted under United States law and protected by worldwide copyright laws and treaty provisions. No part of this material may be copied, reproduced, distributed, republished, downloaded, displayed, posted or transmitted in any form by any means, including electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of Franklin Electric. You may download one copy of the publication from www.franklinwater.com onto a single computer for your personal, non-commercial internal use only. This is a single copy, single use license, not a transfer of title, and is subject to the following restrictions: you may not modify the materials, use them for any commercial purpose, display them publicly, or remove any copyright or other proprietary notices from them.

The information in this publication is provided for reference only and is subject to change without notice. While every effort has been made to ensure the accuracy of this manual at the time of release, ongoing product improvements and updates can render copies obsolete. Refer to www.franklinwater.com for the current version.

This publication is provided "as is" without warranties of any kind, either express or implied. To the fullest extent possible pursuant to applicable law, Franklin Electric disclaims all warranties, express or implied, including but not limited to, implied warranties of merchantability, fitness for a particular purpose, and non-infringement of intellectual property rights or other violation of rights. Franklin Electric does not warrant or make any representations regarding the use, validity, accuracy, or reliability of the material in this publication.

Under no circumstances, including but not limited to, negligence, shall Franklin Electric be liable for any direct, indirect, special, incidental, consequential, or other damages, including, but not limited to, loss of data, property damage, or expense arising from, or in any way connected with, installation, operation, use, or maintenance of the product based on the material in this manual.

Trademarks used in this publication:

The trademarks, service marks, and logos used in this publication are registered and unregistered trademarks of Franklin Electric and others. You are not granted, expressly, by implication, estoppel or otherwise, any license or right to use any trademark, service mark, or logo displayed on this site, without the express written permission of Franklin Electric.

FE Logo and Design ${ }^{\circledR}$, FE MagForce ${ }^{\text {TM }}$, and Cerus ${ }^{\circledR}$ are registered trademarks of Franklin Electric.
NEMA is a trademark of The Association of Electrical Equipment and Medical Imaging Manufacturers.
NEC ${ }^{\circ}$ is a registered trademark of the National Fire Protection Association (NFPA).
UL® is a registered trademark of Underwriters Laboratories.
CSA is a registered mark of the CSA Group, formerly the Canadian Standards Association
Bluetooth is a registered trademark of Bluetooth SIG, Inc.
Modbus is a registered trademark of Schneider Electric USA, Inc.
BACnet is a registered trademark of the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
EtherNet/IPTM and DeviceNet ${ }^{\text {TM }}$ are trademarks licenced by ODVA.

TABLE OF CONTENTS

PRODUCT INFORMATION- 13

Description - 13

Models - 14
Model Number Codes - 14
Applications- 15
UNPACKING AND INSPECTION - 17
Transportation and Storage - 17
Unpacking - 17
Lifting - 18
INSTALLATION PLANNING - 19
Basic VFD Configuration- 20
PHYSICAL INSTALLATION - 21
Environmental Requirements - 21
Mounting the Drive - 22
Mounting Frames A, B, and C - - - - - - - - - - - - - - - - - - - 23

Mounting Frames F, G, and H - 23
Conduit Box Installation - 24
Frames DO and D Conduit Box Installation - - - - - - - - - - - - - - - - - - - 24
Frame E Conduit Box Installation - 25
Frame F Conduit Box Installation - 26
Frame G Conduit Box Installation - 27
Frame H Conduit Box Installation - 28
Drive Dimensions - 30

Wiring Guidelines - 37
Branch Circuit Protection - - -- -- -- -- - - - - - - - - - - - - - - - 38
Fuse and Circuit Breaker Sizing - 38
Wire Sizing - 40
Motor Cable Lengths for Submersible Pumping Applications - - - - - - - - - - - 40
Suggested Maximum Motor Cable Lengths for Non-Submersible Applications - - - - 40
Power Wiring Connections- 41
Power Wiring Diagram - 41
Control Circuit Connections - 43
Terminal Identification - 43
Example Configurations - 45
4-20mA Speed Control Signal from an External BMS or PLC: - - - - - - - - - - 45
0-10V Speed Control Signal from an External BMS or PLC: - - - - - - - - - - - 45
4-20mA Transducer with VFD 10 VDC Power: - - - - - - - - - - - - - - - 45
4-20mA Transducer with VFD 24 VDC Power: - - - - - - - - - - - - - - - - 45
4-20mA Transducer with External 24 VDC Power: - - - - - - - - - - - - - - 46
0-10VDC Transducer with VFD 10 VDC Power: - - - - - - - - - - - - - - - 46
0-10VDC Transducer with VFD 24 VDC Power:- - - - - - - - - - - - - - 46
0-10VDC Transducer with External 24 VDC Power:-------------- 46
Temperature Protection or PID Control with PT-100 or PTC Sensor:- - - - - - - - - 47
Speed Control using 0-10 VDC Potentiometer:- - - - - - - - - - - - - - - 47
Relay switching to control an external starter, contactor, or other system: ----- 47
External HOA switch: 47
NPN and PNP Digital Inputs Configuration 48
DRIVE PROGRAMMING 49
Using the Keypad 49
Home Screen Display Options 49
Setting Operating Parameters 50
Enter Required Parameters Before Starting VFD 50
Verify Default Settings 50
Verify Control Terminal Settings 51
Enter or Verify Optional Settings 51
Default Settings Table - SET Menu 52
Default Settings Table - VFD Menu 53
Default Settings Table - I/O Menu- 55
Default Settings Table - ADV Menu 56
Default Settings Table - PROT Menu 58
Default Settings Table - COMM Menu 59
Default Settings Table - PLC Menu 60
Default Settings Table - Option Menu 61
Default Settings Table - ADV2 Menu 61
Default Settings Table - Motor Menu 63
Default Settings Table - Frequency Defaults with 50 Hz 64
INSTALLATION TESTING 65
Rotation Check 65
Feedback Checks- 65
Performance Checks 65
Sleep Mode Check (Pump Applications) 66
OPERATION 67
Control Options 67
Hand/Auto Controls 67
Forward or Reverse Selection 69
Jog Feature 69
Step Frequencies 70
Shutdown 70
Standard Operation with an Automated Control System 70
Standard Operation with PID Feedback Control 71
Damper Control (HVAC Applications) 72
Fireman's Override 72
Pump Application Features 73
Sleep Mode with Pressure Boost 73
Pipe Fill Feature- 74
Tank Fill, Drain, and Level Control (Analog Trigger) 74
Frequency Limits Controlled by Water (Analog) Level 76
Dual Demand Control with Pipe Leak Protection 77
Lubrication Relay 78
Screen Clean Relay 78
Clean Pump/Anti Jam (De-ragging and impeller cleaning) 78
Timers 79
Power On Run Delay 79
Run Delay Timer (For Auto Mode) 79
Auto Restart Timer after Faults 80
Minimum Run Timer 80
Backspin Timer- 80
Auxiliary Timer 81
Performance Control Features 82
Acceleration/Deceleration Control 82
Analog Repeater Output 83
Auxiliary Analog Input 83
Frequency Detection Trigger (FDT) 83
Scheduling 84
Monitoring Functions 87
Home Screen Status Displays 87
View Screens 88
Protection Features 90
Signal Loss Protection for Analog Inputs 90
ACl Signal Loss 90
AVII Signal Loss 90
Transducer Redundancy 91
Motor Temperature Protection with PT100 or PTC Sensor 92
PT100 Sensor 92
PTC Sensor 92
High Load Detection 94
Fine Tune Settings for HLD by Torque 95
Underload Protection (Dry Well or Belt Loss) 95
Fine Tune Settings for ULD by Torque 96
Overpressure 96
No Flow Protection 96
Broken Pipe Protection (for Pump Applications) 97
Stall Prevention 97
ADVANCED APPLICATION OPTIONS 99
Operation with Permanent Magnet Motors 99
Setup FE MagForce Pump Motor 100
Basic Setup 100
Permanent Magnet Specific Parameters 100
Motor Specific Parameters 101
Autotune Characteristic Parameters- 101
Tune motor control - DC Alignment 101
Tune motor control - I/F Control 101
Tune motor control - PM Control 101
Setup Non-Franklin Electric PM Motors 101
Basic Setup 101
Permanent Magnet Specific Parameters 102
Motor Specific Parameters 102
Autotune Characteristic Parameters 102
Tune motor control - DC Alignment - 102
Tune motor control - I/F Control 103
Tune motor control - PM Control 103
Duplex Pump Configurations 104
Jockey Pump Control 104
Dual PID Loop Control 105
Balancing Pressure in Large Systems Using Multiple Pumps 105
Using Dual PIDs to Control Output when Pumping from a Tank or Well 106
Multi-Motor Configurations 107
Multi-Motor (MMC) Relay Control for Pump Applications 107
Multi-Drive Configurations 109
Multi-Pump Application 109
Method of Operation- 109
VFD Role Definitions for Multi-Drive Operation 110
Sequence Assignment 111
Fault Handling 111
Installation and Setup 112
Configuration 112
Communications 112
Multi-Drive Parameter Programming 113
COMMUNICATIONS 115
FE Connect for Cerus X-Drive Mobile Application 115
Setup Bluetooth Connection 115
Using the Mobile App 116
Navigating the Mobile App 116
My Products Screen 116
Menu Screen 117
Dashboard Screen 117
Setup Screen 118
Logs Screen 118
Drive Info Screen 118
Reports Screen 119
Documentation Screen 119
Support Screen 119
About Screen 119
Modbus Communication 120
X-Drive Configuration for Modbus 120
Communication Parameters Setup 120
System Parameters Setup 121
ModBus Commands and Data Addresses 122
BACnet Communication 123
X-Drive Configuration for BACnet 123
Communication Parameters Setup - 123
System Parameters Setup 123
BACnet Device ID Setup 124
BACnet Objects 124
Commandable Analog Value Objects 124
Status Analog Value Objects (Read Only) 124
Commandable Binary Value Objects 125
Status Binary Value Objects 126
ACCESSORIES 127
Optional Extension Cards 127
Extension Card Installation 129
Setup Optional Ethernet Communication Card 133
MAINTENANCE 135
Troubleshooting 135
Diagnostic Fault Codes 135
Diagnostic Warning Codes 167
Fan Replacement 199
Frame A Heat Sink Fan 199
Frame B Heat Sink Fan 199
Frame B and C Capacitor Fan 200
Frame C Heat Sink Fan 200
Frame D Heat Sink Fan 201
Frame D Capacitor Fan 201
Frame E Heat Sink Fan 202
Frame E Capacitor Fan 202
Frame F Heat Sink Fan 203
Frame F Capacitor Fan 203
Frame G Heat Sink Fan 204
Frame H Heat Sink Fan 205
PARAMETER REFERENCE TABLES 207
Parameter Descriptions > SET Menu 207
Parameter Descriptions > VFD Menu 212
Parameter Descriptions > I/O Menu 215
Parameter Descriptions > ADV Menu 221
Parameter Descriptions > Protection Menu 226
Parameter Descriptions > COMM Menu 228
Parameter Descriptions > PLC Menu 231
Parameter Descriptions > Option Menu 232
Parameter Descriptions > ADV2 Menu 234
Parameter Descriptions > Motor Menu 237
SPECIFICATIONS 239
Common Specifications 239
200~230V Class 1~125HP (0.75~90kW) 240
460 V Class 1~75HP (5.5~55kW) 241
460V Class 100~675HP (75~500kW) 242
575~690V Class 1~150HP (1.5~175kW) 243
575~690V Class 150~700HP (160~522kW) 244
Derating Charts 245
Carrier Frequency Derating 245
230 V / 460 V Induction Motor with VF or SVC Control 245
230 V / 460 V Permanent Magnet Motor with SVC Control (FE MagForce) 246
575 V / 690 V Induction Motor with VF or SVC Control 246
Ambient Temperature Derating 247
Altitude Derating 248
Maximum Frequency Output 248
Induction Motor Max Frequency 248
Max Frequency By Model 248
Replacement Components List 249
Applicable Standards 250
GLOSSARY 251
STANDARD LIMITED WARRANTY 255
10

SAFETY INSTRUCTIONS

Hazard Messages

This manual includes safety precautions and other important information in the following formats:

A DANGER
 Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

AWARNING
 Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate personal injury.

NOTICE
 Indicates a potentially hazardous situation which, if not avoided could result in damage to equipment or other property.

IMPORTANT: Identifies information that controls correct assembly and operation of the product.

NOTE: Identifies helpful or clarifying information.

This symbol alerts the user to the presence of dangerous voltage inside the product that might cause harm or electrical shock.

IIIThis symbol alerts the user to the presence of hot surfaces that might cause fire or personal injury.

Before Getting Started

This equipment should be installed and serviced by technically qualified personnel who are familiar with the correct selection and use of appropriate tools, equipment, and procedures. Failure to comply with national and local electrical and plumbing codes
and within Franklin Electric recommendations may result in electrical shock or fire hazard, unsatisfactory performance, or equipment failure.

Read and follow instructions carefully to avoid injury and property damage. Do not disassemble or repair unit unless described in this manual.

Failure to follow installation or operation procedures and all applicable codes may result in the following hazards:

AWARNING

High voltages capable of causing severe injury or death by electrical shock are present in this unit.

- To reduce risk of electrical shock, disconnect power before working on or around the system. More than one disconnect switch may be required to de-energize the equipment before servicing.
- Make sure the ground terminal is connected to the motor, control enclosures, metal plumbing, and other metal near the motor or cable using wire no smaller than motor cable wires.

\triangle CAUTION

$\Delta \triangle$Risk of bodily injury, electric shock, or property damage.

- This equipment must not be used by children or persons with reduced physical, sensory or mental abilities, or lacking in experience and expertise, unless supervised or instructed. Children may not use the equipment, nor may they play with the unit or in the immediate vicinity.
- Equipment can start automatically. Lockout-Tagout before servicing equipment.
- This equipment produces high temperatures during normal operation. Use caution when contacting surfaces.
- Operation of this equipment requires detailed installation and operation instructions provided in this manual for use with this product. Read entire manual before starting installation and operation. End User should receive and retain manual for future use.
- Keep safety labels clean and in good condition.

Product Specific Precautions

AWARNING

High voltages capable of causing severe injury or death by electrical shock are present in this unit.

- Do not remove VFD cover for wiring or periodic inspections while power is applied, or the unit is in operation.
- Capacitors inside the drive can still hold lethal voltage even after power has been disconnected. ALWAYS check if DC bus charge LED is off and $D C$ voltage on the terminals $D C(+1)$ and $D C(-)$ is less than 30VDC before working on VFD wiring. The DC bus capacitors may hold high-voltage charge for several minutes after the VFD power is disconnected.
- Perform wiring after VFD has been mounted. Otherwise, electric shock or bodily injury can occur.
- Do not apply power to a damaged VFD or to VFD with missing parts.
- Do not use VFD if power or motor cable is damaged.
- Do not handle the VFD or control devices with wet hands or when standing on a wet or damp surface, or in water.

ACAUTION

$\triangle \triangle$ Risk of bodily injury, electric shock, or property damage.

- Install VFD on a non-flammable surface. Do not place flammable materials nearby.
- Disconnect the input power if VFD has been damaged.
- Do not touch VFD after shutting down or disconnecting it. It can remain hot for a few minutes.
- Do not allow lint, paper, wood chips, dust, metallic chips or other foreign material into the drive.
- Some VFD parameters are set as default to automatically start VFD in some applications. Disable these parameters if automatic start is not safe for personnel or equipment.
- If restart after fault reset is selected, the VFD can start automatically after fault reset.
- If required, provide an emergency mechanical brake to prevent any hazardous conditions if VFD fails during operation.

NOTICE

Risk of damage to drive or other equipment.

- Install and wire VFD according to the instructions in this manual.
- Take protective measures against ESD (Electrostatic Discharge) before touching control boards during inspection, installation or repair.
- Do not connect power factor correction capacitors, surge suppressors, or RFI filter to the VFD output.
- Check if input power voltage is within acceptable range before applying power to VFD.
- Set correct motor data from the motor nameplate and overload protection parameters for proper motor overload protection.
- Do not modify VFD internal components and circuits.
- Power factor capacitors and generators may become overheated and damaged due to harmonics distortion created by VFD.
- The use of any disconnecting device (contactor, disconnect etc.) in motor circuit during VFD run can cause damage to VFD power components. Stop VFD before opening the motor circuit with disconnect or contactor.
- Use, if possible, an inverter rated or motor with insulation Class F or higher. For submersible pump motors, use Class B or higher. The VFD generates high frequency output pulses with spikes, which can deteriorate motor winding insulation and eventually damage the motor. The longer distance to the motor the higher amplitude of these voltage spikes will be applied to motor winding. Any cables with paralleled wires will increase the amplitude of these spikes at motor terminals.
- VFD can operate motor at frequencies higher than 50 HZ or 60 Hz . Verify the maximum allowed speed with motor and machinery manufacturers prior to increasing output frequency because it can overheat motor or damage machinery.

PRODUCT INFORMATION

Description

The Cerus X-Drive is a variable frequency drive (VFD) designed to control and protect three phase motors in industrial, municipal, and agricultural sites. The X-Drive family offers an extensive range of amperage and configuration options, making it versatile enough for nearly any constant or variable torque application.

Industry standard application settings are pre-configured for submersible or centrifugal pumps, supply or exhaust fans, cooling towers, vacuum pumps, and constant torque, FE MagForce, and permanent magnet motors. In addition, many input/output and control options are available for application specific features, such as PID speed control, pressure control, temperature or fluid level controls, and scheduling.

Native Modbus and BACnet communication protocols allow integration with many automated control and building management systems. In addition, an optional Bluetooth communication card provides access for programming, operating, and monitoring the drive using the FE Connect for Cerus X-Drive Mobile App. Refer to "Optional Extension Cards" on page 127.

Features

Configuration

- Compatible with three-phase induction or permanent magnet motors
- Extensive selection of models available. Refer "Models" on page 14.
- Easy setup with built-in application defaults
- Many programmable Input/Output terminal options
- Available NEMA (NEMA 1 or 3R) and UL (UL Type 1, IP21, or 4X) enclosure offerings

Application-specific features

- Many pump specific features, including: Sleep mode, Lubrication for hollow-shaft motors, Pipe fill mode, Broken pipe protection, screen clean
- Damper control

- Dual demand controls
- Automated scheduling
- Multi-motor and multi-drive

Operation

- Integrated HOA functionality
- Integrated display with keypad control of all functions
- Real-time fault logging with date and time stamps

Protection

- Protection against short circuit, incorrect wiring, surges, underload, overload, drive overheat, undervoltage, overvoltage, phase loss, phase imbalance, output open phase, overpressure, sensor fault, etc.
- The X-Drive allows your motor to gradually ramp up and down, saving equipment from sudden, harsh rushes of current that can shorten its lifespan

Communication

- RS-485 communications (Modbus, BACnet) for remote control or monitoring
- Bluetooth connectivity with Cerus X-Drive Mobile App
- Communications for multi-drive operations-up to eight VFDs

Models

Model Number Codes

			1. Product Family: Cerus X Drive series 2. Output Amperage Ratings: 5 to 930 A			3. Input Voltage$\begin{aligned} & 2 \mathrm{~V}=200 / 230 \mathrm{~V} \\ & 4 \mathrm{~V}=460 \mathrm{~V} \\ & 6 \mathrm{~V}=575 \mathrm{~V} \end{aligned}$			
	Frame A			Frame B			Frame C		
	SKU	Output Amp Rating		SKU	Output Amp Rating		SKU	Output Amp Rating	
		3-phase input	1-phase input		3-phase input	1-phase input		3-phase input	1-phase input
$\begin{gathered} 200 \mathrm{~V} \\ 1 / \\ 230 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { CXD-005A-2V } \\ & \text { CXD-007A-2V } \\ & \text { CXD-010A-2V } \\ & \text { CXD-015A-2V } \\ & \text { CXD-021A-2V } \end{aligned}$	$\begin{gathered} 5.0 \\ 7.5 \\ 10.0 \\ 15.0 \\ 21.0 \end{gathered}$	$\begin{array}{r} 2.5 \\ 3.7 \\ 5.0 \\ 7.5 \\ 10.5 \end{array}$	$\begin{aligned} & \text { CXD-031A-2V } \\ & \text { CXD-046A-2V } \\ & \text { CXD-061A-2V } \end{aligned}$	$\begin{aligned} & 31.0 \\ & 46.0 \\ & 61.0 \end{aligned}$	$\begin{gathered} 15.5 \\ 23 \\ 30.5 \end{gathered}$	$\begin{aligned} & \text { CXD-075A-2V } \\ & \text { CXD-090A-2V } \\ & \text { CXD-105A-2V } \end{aligned}$	$\begin{array}{r} 75.0 \\ 90.0 \\ 105.0 \end{array}$	$\begin{gathered} 37.5 \\ 45 \\ 52.5 \end{gathered}$
460V	CXD-003A-4V CXD-004A-4V CXD-005A-4V CXD-008A-4V CXD-010A-4V CXD-013A-4V CXD-018A-4V	3.0 4.2 5.5 8.5 10.5 13.0 18.0	1.5 2.1 2.7 4.2 5.2 6.5 9.0	$\begin{aligned} & \text { CXD-024A-4V } \\ & \text { CXD-032A-4V } \\ & \text { CXD-038A-4V } \end{aligned}$	$\begin{aligned} & 24.0 \\ & 32.0 \\ & 38.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 16.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & \text { CXD-045A-4V } \\ & \text { CXD-060A-4V } \\ & \text { CXD-073A-4V } \end{aligned}$	$\begin{aligned} & 45.0 \\ & 60.0 \\ & 73.0 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 30.0 \\ & 36.5 \end{aligned}$
575V	$\begin{aligned} & \text { CXD-003A-6V } \\ & \text { CXD-004A-6V } \\ & \text { CXD-006A-6V } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.3 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.1 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \text { CXD-009A-6V } \\ & \text { CXD-012A-6V } \\ & \text { CXD-018A-6VA } \\ & \text { CXD-024A-6V } \end{aligned}$	$\begin{aligned} & \hline 9.9 \\ & 12.1 \\ & 18.7 \\ & 24.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.9 \\ & 6.0 \\ & 9.3 \\ & 12.1 \end{aligned}$	$\begin{aligned} & \text { CXD-030A-6V } \\ & \text { CXD-036A-6V } \\ & \text { CXD-045A-6V } \end{aligned}$	$\begin{aligned} & 30.0 \\ & 36.0 \\ & 45.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 18.0 \\ & 22.5 \end{aligned}$
	Frame D			Frame E			Frame F		
$\begin{array}{\|c\|} \hline 200 \mathrm{~V} \\ 1 \\ 230 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { CXD-146A-2V } \\ & \text { CXD-180A-2V } \end{aligned}$	$\begin{aligned} & 146.0 \\ & 180.0 \end{aligned}$	$\begin{aligned} & 48.2 \\ & 59.4 \end{aligned}$	$\begin{aligned} & \text { CXD-215A-2V } \\ & \text { CXD-276A-2V } \\ & \text { CXD-322A-2V } \end{aligned}$	$\begin{aligned} & 215.0 \\ & 276.0 \\ & 322.0 \end{aligned}$	$\begin{gathered} 70.9 \\ 91.1 \\ 106.2 \end{gathered}$			
460V	$\begin{aligned} & \text { CXD-091A-4V (DO) } \\ & \text { CXD-110A-4V (DO) } \\ & \text { CXD-150A-4V } \\ & \text { CXD-180A-4V } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 91.0 \\ 110.0 \\ 150.0 \\ 180.0 \\ \hline \end{gathered}$	$\begin{aligned} & 30.0 \\ & 36.3 \\ & 49.5 \\ & 59.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CXD-220A-4V } \\ & \text { CXD-260A-4V } \end{aligned}$	$\begin{aligned} & 220.0 \\ & 260.0 \end{aligned}$	$\begin{aligned} & \hline 72.6 \\ & 85.8 \end{aligned}$	$\begin{aligned} & \text { CXD-310A-4V } \\ & \text { CXD-370A-4V } \end{aligned}$	$\begin{aligned} & 310.0 \\ & 370.0 \end{aligned}$	$\begin{aligned} & 102.3 \\ & 122.1 \end{aligned}$
575V	$\begin{aligned} & \text { CXD-054A-6V } \\ & \text { CXD-067A-6V } \end{aligned}$	$\begin{aligned} & 54.0 \\ & 67.0 \end{aligned}$	$\begin{aligned} & 17.8 \\ & 22.1 \end{aligned}$	$\begin{aligned} & \text { CXD-086A-6V } \\ & \text { CXD-104A-6V } \\ & \text { CXD-125A-6V } \\ & \text { CXD-150A-6V } \\ & \hline \end{aligned}$	$\begin{aligned} & 86.0 \\ & 104.0 \\ & 125.0 \\ & 150.0 \\ & \hline \end{aligned}$	28.4	$\begin{aligned} & \text { CXD-180A-6V } \\ & \text { CXD-220A-6V } \end{aligned}$	$\begin{aligned} & 180.0 \\ & 220.0 \end{aligned}$	
	Frame G			Frame H			Frame H (690)		
460V	$\begin{aligned} & \text { CXD-460A-4V } \\ & \text { CXD-530A-4V } \end{aligned}$	$\begin{aligned} & 460.0 \\ & 530.0 \end{aligned}$	$\begin{aligned} & 151.8 \\ & 174.9 \end{aligned}$	$\begin{aligned} & \text { CXD-616A-4V } \\ & \text { CXD-683A-4V } \\ & \text { CXD-770A-4V } \end{aligned}$	$\begin{aligned} & 616.0 \\ & 683.0 \\ & 770.0 \\ & \hline \end{aligned}$	$\begin{gathered} 203.28 \\ 225.39 \\ 254.1 \end{gathered}$			
575V	$\begin{aligned} & \text { CXD-290A-6V } \\ & \text { CXD-350A-6V } \end{aligned}$	$\begin{aligned} & 290.0 \\ & 350.0 \end{aligned}$					$\begin{aligned} & \text { CXD-430A-6V } \\ & \text { CXD-465A-6V } \\ & \text { CXD-590A-6V } \\ & \text { CXD-675A-6V } \end{aligned}$	$\begin{aligned} & 430.0 \\ & 465.0 \\ & 590.0 \\ & 675.0 \\ & \hline \end{aligned}$	

Applications

Application	Options	Reference
Supply or Exhaust Fan	- BAS controlled - Damper - Smoke purge - Fire mode (exhaust fans only)	Refer to "Standard Operation with PID Feedback Control" on page 71 and "Damper Control (HVAC Applications)" on page 72.
Cooling Tower	- Temperature controller - Damper	Refer to "Temperature Protection or PID Control with PT-100 or PTC Sensor:" on page 47 or "Damper Control (HVAC Applications)" on page 72.
Centrifugal (Surface/Booster) Pump	- Constant pressure - Constant Flow - Constant level - Booster pump - Wastewater - Long pipe - Supply monitoring (2 ${ }^{\text {nd }}$ PID or pressure switch) - De-watering (clean screen)	Refer to "Basic VFD Configuration" on page 20, "Drive Programming" on page 49, and "Operation" on page 67.
Submersible Pump	- Constant pressure - Dew-watering (2 ${ }^{\text {nd }}$ PID, well recovery timer) - Pivot/Irrigation - Tank filling - Long pipe/ dual acceleration - Lead-Lag - Lead-Lag-Alternation - Jockey - Pony - Dual demand - Lubrication - Line-shaft turbine	Refer to "Basic VFD Configuration" on page 20, "Motor Cable Lengths for Submersible Pumping Applications" on page 40, "Drive Programming" on page 49, and "Operation" on page 67.
Vacuum	- Car wash - Industrial	Refer to "Drive Programming" on page 49, and "Operation" on page 67.
Constant Torque	- Shaker - Grinder - Crusher - Conveyor, Feeder - Mill/Roller	Refer to "Fuse and Circuit Breaker Sizing" on page 38, "Drive Programming" on page 49, and "Specifications" on page 239.
Permanent Magnet Motor	- Submersible - FE MagForce	Refer to "Operation with Permanent Magnet Motors" on page 99.

PRODUCT INFORMATION

Applications

UNPACKING AND INSPECTION

Transportation and Storage

NOTICE

Risk of damage to VFD or other equipment.

- Do not stack VFD boxes higher than standard 48" cube height when palleting for storage.
- Do not place heavy items on VFD.
- Do not drop VFD or subject it to hard impact.
- Dispose of VFD properly as industrial equipment waste.

The VFD should be stored in the shipping carton or crate before installation in a controlled environment that meets the following requirements:

Storage Temperature	-25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Location	Pollution Degree 2 Environment
Relative Humidity	95% Maximum relative humidity (non-condensing)

The performance of capacitors in the drive will degrade if not charged occasionally. It is recommended to charge a stored drive every 2 years to restore the performance of the capacitors.

NOTE: If the VFD is kept in storage for longer than 2 years, when powering the drive, use an adjustable AC power source (ex. AC autotransformer) to charge the drive at 70 to 80% of the rated voltage for 30 minutes (do not run the drive). Then charge the drive at 100% of rated voltage for an hour (do not run the drive).

Unpacking

\triangle CAUTION

Risk of personal injury or damage to VFD or other equipment.

- Use suitable lifting equipment, in good condition, rated for at least 5 times the weight of the VFD. Refer to "Specifications" on page 239 for the weight of each drive by frame size.

1. Inspect exterior of package for shipping damage. If there is damage, notify the shipping agent and your sales representative.
2. Make sure the part number and product ratings on the identification label are correct for the application.
3. When possible, remove the VFD cover and make sure the product ratings on the nameplate match the package label.
4. The VFD comes in various forms of shipping crates. If applicable, remove the top and side fasteners from the packaging.

5. Some crates are secured with clips. Remove clips with a suitable prying tool.
6. Remove the crate cover, foam packing inserts, owner's manual, and any other items inside the crate.
7. Remove fasteners securing the drive to the pallet.
8. Inspect the VFD for damage.
9. Allow the drive to remain on the pallet until you are ready to install it in the permanent location. Refer to""Mounting the Drive" on page 22.

Lifting

When removing large VFDs from the pallet, use suitable lifting equipment connected to the lifting holes at the top outer edges of the unit.

Use a spreader bar the same width as the drive so the lifting cables are straight up and down.

INSTALLATION PLANNING

NOTICE

Risk of damage to VFD, or malfunction can occur.

- An incorrectly applied or installed VFD can result in system malfunction or reduction in product life as well as component damage. You must read and understand this manual thoroughly before proceeding with installation.
- Do not install a magnetic contactor or motor disconnect in the motor circuit for start/stop or emergency stop purpose. Opening the motor circuit while the VFD is running may cause VFD failure.

Refer to the following table when planning installation of the Cerus X-Drive VFD.

1	2	3	4	5	6
Plan System Goals	Identify Options	Select Control Methods	Install VFD Hardware	Install Wiring	Program Parameters
Intended Function - Air Handling - Fluid Circulation - Constant Pressure - Pressure Boosting - Irrigation - Dewatering - Carwashes - Conveyors - Crushers - Grinders Hardware Application - Supply Fan - Exhaust Fan - Cooling Tower - Centrifugal Pump - Submersible Pump - Vacuum Pump - Constant Torque - FE Magforce Permanent Magnet Motor	Automation - Damper Control - Sleep mode - Timers - Scheduling - Analog Repeater Output - Dual Demand - 2nd PID Control - Hopping Carrier Protection - Shutdown - Redundancy - Broken Pipe - Fire Override - Pipe Leak - Auto Restarts Maintenance - Screen clean - Lubrication - De-ragging - Anti-jam Multi-Motor Control - Equal Run Time - Soft Start - Lead/Lag - Rotation Multi-VFD Control - Equal Run Time - Lead/Lag - Alternation - Jockey Pump	Hand/Off/Auto - Keypad - Panel Mounted - Remote - 3-wire Control Transducer (PID) - Temperature - Pressure - Vacuum - Flow Switches - Potentiometer - Float - On/Off - Speed control - Run by Analog Communications - BMS/PLC - Modbus - BACnet - Drive-to-drive - Bluetooth	Location - Inside - Outside Climate control - Temperature - Moisture Distance - Wire sizes - Filtering requirements Measurements - Clearance - Drilling	Conduit - Routing - Separation High Voltage - Grounding - Inputs - Outputs Control circuits - Analog inputs - Switched inputs - Voltage inputs - Programmable outputs - Communication	Basic - Application - Motor ratings - Setpoints - Limits - Input phases I/O setup - Input functions - Output functions - Scaling Option settings - Enable features - Set targets

1. Determine the appropriate options and control methods as well as how the VFD should be installed and programmed. Refer to "Operation" on page 67 for examples of how the system might be used.
2. Define and automate features that support the intended operation. These features may require specialized control methods and programming. For more details, refer to "Control Options" on page 67, "Standard Operation with an Automated Control System" on page 70,and "Protection Features" on page 90.
3. Select different methods for automating motor speed control. Refer to "Example Configurations" on page 45 for possible control setups.

INSTALLATION PLANNING

4. Mount the VFD after determining the overall function of the system. Refer to "Physical Installation" on page 21 for guidelines.
5. Connect the VFD according to the selected motor application and control method(s). Refer to "Electrical Installation" on page 37 for more information.
6. Program the VFD quickly and easily for most standard operations. Refer to "Setting Operating Parameters" on page 50. Adjust additional parameters for advanced features or options that achieve the desired performance. Refer to "Advanced Application Options" on page 99 and "Parameter Reference Tables" on page 207.

Basic VFD Configuration

The following table includes the most commonly used devices in a motor control branch operated by a VFD. Adequate peripheral devices and correct connections are essential for proper VFD operation.

PHYSICAL INSTALLATION

Environmental Requirements

NOTICE

Risk of damage to VFD, or malfunction can occur due to improper handling, installation, or environment.

- Do not mount VFD on equipment with excessive vibration.
- Install in a location where temperature is within the range of product rating.
- Do not mount VFD in direct sunlight or near other heat sources.
- The VFD should be mounted in a Pollution Degree 2 environment. If VFD will be installed in an environment with a high probability of dust, metallic particles, mists, corrosive gas or other contaminants, the VFD must be mounted inside an appropriate electrical enclosure with proper NEMA, UL Type, or IP rating and adequate cooling.
- When two or more VFDs are installed in a ventilated enclosure, the cooling system should provide adequate airflow for all the VFDs. Do not install VFD above another heat source (another VFD, inductive reactors, etc.).

The VFD must be installed and used in a controlled environment that meets the following requirements:

Ambient Temperature	$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ for UL Open Type/IP20 (top cover must be removed) $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ for NEMA 1 / UL Type $1 /$ IP20 enclosure
Location	Pollution Degree 2 Environment
Altitude	1000 m (3281 ft) above sea level. De-rate current 1% per 100 m (328 ft) from 1000 to 2000 m ($3281-$ 6562 ft). Consult Technical Support for installations above 2000 m .
Relative Humidity	95\% Maximum relative humidity (non-condensing)
Vibration	1.0 mm , peak to peak value range from 2 Hz to 13.2 Hz $0.7 \mathrm{G}-1.0 \mathrm{G}$ range from 13.2 Hz to 55 Hz 1.0G range from 55 Hz to 512 Hz

The drive electronics are air-cooled. Provide enough clearance for airflow around the VFD. See minimum mounting clearance table below for different VFD frame sizes.

Mount VFD vertically (top up) for proper heat dissipation.

Do not mount VFD in direct sunlight or near other heat sources.

Do not block cooling vents or airflow with any panel components or wires. Prevent debris from adhering to the heat sink.

Frame Size	A	B	C*	D
A, B, \& C	$60 \mathrm{~mm} / 2.4 \mathrm{in}$.	$30 \mathrm{~mm} / 1.2 \mathrm{in}$.	$30 \mathrm{~mm} / 1.2$ in.	$0 \mathrm{~mm} / 0.0 \mathrm{in}$.
D, E, \& F	$100 \mathrm{~mm} / 3.9 \mathrm{in}$.	$50 \mathrm{~mm} / 2.0 \mathrm{in}$.	$100 \mathrm{~mm} / 3.9$ in. total	$0 \mathrm{~mm} / 0.0 \mathrm{in}$.
G	$200 \mathrm{~mm} / 7.9 \mathrm{in}$.	$100 \mathrm{~mm} / 3.9 \mathrm{in}$.	$200 \mathrm{~mm} / 7.9 \mathrm{in}$.	$0 \mathrm{~mm} / 0.0 \mathrm{in}$.
H	$350 \mathrm{~mm} / 13.8$ in.	$0 \mathrm{~mm} / 0.0 \mathrm{in}$.	$0 \mathrm{~mm} / 0.0 \mathrm{in}$.	$200 \mathrm{~mm} / 7.9 \mathrm{in}$.

[^0]
Mounting the Drive

\triangle CAUTION

Risk of bodily injury or damage to drive or other equipment.

- The drive should be mounted on a structure such as a wall or post capable of supporting the weight of the unit. Refer to "Specifications" on page 239 for drive weight.
- Install VFD on a non-combustible surface.
- Ensure suitable mounting hardware is used when installing the drive.
- Do not install the drive on unreinforced drywall.
- Use suitable lifting equipment, in good condition, rated for at least 5 times the weight of the drive.

The mounting location should have nearby access to the electrical supply and access to the motor wiring.
Refer to "Electrical Installation" on page 37.
Use lag screws or bolts appropriate for supporting the weight of the drive.

1. Mount the drive using the mounting holes on the back side of the drive enclosure.
2. Screws at the top must attach to a solid structure such as a stud or brace.
3. All screw hole locations should be used to ensure the drive is securely mounted.

IMPORTANT: Do not drill holes in the drive.
When removing large drives from the pallet, use suitable lifting equipment connected to the lifting holes at the top outer edges of the drive.

1. Use a spreader bar the same width as the drive so the lifting cables are straight up and down.
2. Slowly lift the drive from the pallet.
3. Use lifting equipment to place the drive in the desired installation location.

Mounting Frames A, B, and C

These frames have four corner mounting holes on the drive. Refer to "Drive Dimensions" on page 30 for mounting hole locations and sizes.

1. Have one person hold the drive in location while another installs the lag screws in each corner, ensuring they go into a solid stud or brace. Install the lower left lag screw first.
2. Place a level on top of the drive. When level, install the upper right corner lag screw.
3. Install the remaining two lag screws.

Mounting Frames DO, D, and E

These frames have four corner mounting holes on the drive. The bottom two holes are U-shaped slots, allowing the drive to be lowered onto pre-installed lag screws. Refer to "Drive Dimensions" on page 30 for mounting hole locations and sizes.

1. Install two lag screws for the bottom locations, ensuring they are level and enter a solid stud or brace.
2. Use a lifting device to lower the U-shaped mounting slots onto the bottom lag screws. The conduit box is not shown in this image to better show the bottom mounting slots.
3. Hold the drive tight against the backing board, and install the remaining two lag screws in the top mounting holes.

Mounting Frames F, G, and H

These frames include two keyhole shaped mounting holes at the top, allowing the drive to be set onto pre-installed lag screws. Refer to "Drive Dimensions" on page 30 for mounting hole locations and sizes.

1. Install two lag screws for the top locations, ensuring they are level and enter a solid stud or brace.
2. Use a properly sized lifting device to lower the top keyhole shaped mounting slots onto the lag screws.
3. Hold the drive tight against the backing board, and install the remaining lag screws in the bottom mounting holes, ensuring they enter a solid stud or brace.

Conduit Box Installation

Frames A, B and C do not require an added conduit box.

Frames DO and D Conduit Box Installation

1. Loosen two lower drive cover screws.
2. Press the tabs on each side of the cover.
3. Remove the cover.

4. Remove five screws.

5. Install the conduit box with five screws. Tighten to a torque of $24-26 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in} . / 2.4-2.5 \mathrm{Nm}$.
6. Replace the lower drive cover and rotate to the closed position. Secure with two screws from step 1. Tighten to a torque of $12-15 \mathrm{~kg}-\mathrm{cm} / 10.4-13 \mathrm{lb}-\mathrm{in}$. / 1.2-1.5 Nm.

Frame E Conduit Box Installation

1. Loosen four lower drive cover screws.
2. Remove the cover.

3. Install the conduit box with six screws. Tighten to a torque of $24-26 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in}$. $2.4-2.5 \mathrm{Nm}$.
4. Replace the cover and secure with screws from step 1. Tighten to a torque of $12-15 \mathrm{~kg}-\mathrm{cm} / 10.4-13 \mathrm{lb}-\mathrm{in} . / 1.2-1.5 \mathrm{Nm}$.

Frame F Conduit Box Installation

1. Remove four lower drive cover screws.
2. Remove the cover from the drive.

Remove four screws from the conduit box cover.

3. Align the conduit box flanges behind the flanges of the drive bottom.
4. Secure the conduit box to the drive (flange to flange) with four screws.
Tighten the screws to a torque of
$24-26 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in}$. / 2.4-2.5 Nm.

5. Install the conduit box cover using four screws from step 2.

Tighten to a torque of
$13-16 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in} . / 2.4-2.5 \mathrm{Nm}$.
6. Replace the cover and secure with four screws from step 1. Tighten to a torque of $12-15 \mathrm{~kg}-\mathrm{cm} / 10.4-13 \mathrm{lb}-\mathrm{in} . / 1.2-1.5 \mathrm{Nm}$.

Frame G Conduit Box Installation

1. Loosen seven conduit box cover screws, slide it forward, and remove the cover.
2. Loosen four lower drive cover screws. Remove the cover.

3. Remove the eight screws identified.
4. Align the conduit box with the flanges of the drive. Reinstall the eight screws from step 3.
M5 Screw torque: 24-26 kg-cm / 20.8-22.6 lb-in. / 2.4-2.5 Nm M8 Screw torque: $100-120 \mathrm{~kg}-\mathrm{cm} / 86.7-104.1 \mathrm{lb}-\mathrm{in} . / 9.8-11.8 \mathrm{Nm}$
5. Secure further with eight screws.

M5 Screw torque: $24-26 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in} . / 2.4-2.5 \mathrm{Nm}$ M8 Screw torque: 100-120 kg-cm / 86.7-104.1 lb-in. / 9.8-11.8 Nm

6. Set the conduit box cover on the conduit box and slide it toward the conduit knockouts. Tighten the screws to a torque of $24-26 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in}$. / 2.4-2.5 Nm.
7. Place the cover back on the drive, and tighten the screws to a torque of $12-15 \mathrm{~kg}-\mathrm{cm} / 10.4-13 \mathrm{lb}-\mathrm{in} . / 1.2-1.5 \mathrm{Nm}$.

Frame H Conduit Box Installation

1. Remove all screws holding the covers of the conduit box kit and remove the covers.

2. Remove the screws shown from the bottom of the drive and remove the bracket.

3. Fasten the M 6 screws to two locations. Tighten screws to a torque of $35-45 \mathrm{~kg}-\mathrm{cm} / 30.3-39 \mathrm{lb}$-in. / 3.4-4.4 Nm.

4. Install the conduit box to the drive using the following screws and nuts tightened to a torque of: M6 Screws 1-6: 55-65 kg-cm / 47.7-56.4 lb-in / 5.4-6.4 Nm
M8 Screws 7 - 9 and Nuts $14-17: 100-110 \mathrm{~kg}-\mathrm{cm} / 86.7-95.4 \mathrm{lb}-\mathrm{in} / 9.8-10.8 \mathrm{Nm}$
M10 Nuts 10-13: 250-300 kg-cm / 216.9-260.3 lb-in / 24.5-29.4 Nm

5. Replace the covers and screws removed in Step 1 to the original locations. Tighten to a torque of $35-45 \mathrm{~kg}-\mathrm{cm} / 30.3-39 \mathrm{lb}-\mathrm{in} . / 3.4-4.4 \mathrm{Nm}$.

Drive Dimensions

Frame A

Frame B

Frame C

Frame DO

Frame D

Frame E

Frame F

Frame G

PHYSICAL INSTALLATION
 Drive Dimensions

Frame H

Frame H (690 V)

ELECTRICAL INSTALLATION

Wiring Guidelines

NOTICE

Risk of damage to VFD, or malfunction can occur.
Follow all wire routing and grounding instructions carefully. Inductive currents caused by parallel wiring, or close proximity between high voltage and control wiring can cause unexpected behaviors.

- Do not run input power and motor wires in the same conduit.
- Do not run motor wires from multiple VFDs in common conduit.
- Do not run control wiring parallel with high voltage wiring.
- Do not run VFD wiring parallel with building or facility wiring.
- Do not use aluminum wires for VFD connections.
- Do not install power factor correction capacitors, surge suppressors, or RFI filters on the VFD output.
- Do not install a magnetic contactor or disconnect in the motor circuit.
- Do not leave wire fragments, metal shavings or other metal objects inside the VFD.
- Improper splicing or damage to motor cable insulation may expose the conductor(s) to moisture and can produce motor cable failure.
- For retrofit application, check the integrity of power and motor leads. This requires measuring the insulation resistance with a suitable megohm-meter.

1. Mount the drive as close as possible to the service entrance panel. Connect directly to the service entrance, not to a sub-panel.
2. Use a dedicated branch circuit for the drive. Verify that the circuit is equipped with a properly-sized circuit breaker or fuse.
3. Separate input power and motor wiring by at least 8 in. $(20.3 \mathrm{~cm})$.
4. Cross over other branch circuits and facility wiring at a 90° angle. If necessary to run wires in parallel, separate by at least 8 in . $(20.3 \mathrm{~cm})$.
5. All control wiring-sensors, switches, transducers, etc.-should be in a separate conduit routed individually, not parallel, from high voltage wiring. In addition, any shielded cables should be properly grounded.
6. Treat Open-Delta power configuration (two-transformer utility bank) as single-phase power and size VFD and power wiring accordingly.
7. Install a line reactor for VFDs in pump systems with dedicated service transformer to protect VFD from transient power surges and provide some degree of harmonics distortion mitigation.

Wiring Guidelines

Branch Circuit Protection

Integral solid-state short circuit protection does not provide Branch Circuit Protection. Branch Circuit Protection must be provided in accordance with the National Electrical Code (NEC) and applicable local codes or equivalent as determined by Authorities Having Jurisdiction (AHJ). The drive shall be protected by Listed Class J fuses, listed inverse-time circuit breakers, or Franklin Electric Manual Motor Starters.

Short-circuit current rating (SCCR): The drive is suitable for use on a circuit capable of delivering no more than 100,000 symmetrical amperes (rms) when protected by suitable Class J fuses. For rated fuse currents, refer to NEC Sec 430 and the Franklin Electric AIM Manual. When protected by a circuit breaker and placed in a panel, drive SCCR is as follows:

VFD Output Rating	Short Circuit Rating
Up to $50 \mathrm{HP}(0$ to 37.3 kW$)$	5,000 Amperes (rms)
51 to $200 \mathrm{HP}(39$ to 149 kW$)$	10,000 Amperes (rms)
201 to $400 \mathrm{HP}(150$ to 298 kW$)$	18,000 Amperes (rms)
401 to $600 \mathrm{HP}(299$ to 447 kW$)$	20,000 Amperes (rms)
601 to $900 \mathrm{HP}(448$ to 671 kW$)$	42,000 Amperes (rms)

Fuse and Circuit Breaker Sizing

See the table below for maximum current ratings of fuses and circuit breakers per NEC.
NOTE: Follow local or regional regulations for specific requirements.

Model		Input Current		Class J Fuse Size	Breaker Size
		Constant Torque	Variable Torque		
$\begin{gathered} 200 \mathrm{~V} \\ \vdots \\ 230 \mathrm{~V} \end{gathered}$	CXD-005A-2V	3.9 A	6.4 A	15 A	15 A
	CXD-007A-2V	6.4 A	9.6 A	20 A	20 A
	CXD-010A-2V	12 A	15 A	30 A	30 A
	CXD-015A-2V	16 A	22 A	40 A	40 A
	CXD-021A-2V	20 A	25 A	50 A	50 A
	CXD-031A-2V	28 A	35 A	60 A	60 A
	CXD-046A-2V	36 A	50 A	100 A	100 A
	CXD-061A-2V	52 A	65 A	125 A	125 A
	CXD-075A-2V	72 A	83 A	150 A	150 A
	CXD-090A-2V	83 A	100 A	200 A	200 A
	CXD-105A-2V	99 A	116 A	225 A	225 A
	CXD-146A-2V	124 A	146 A	250 A	250 A
	CXD-180A-2V	143 A	180 A	300 A	300 A
	CXD-215A-2V	171A	215 A	400 A	400 A
	CXD-276A-2V	206 A	276 A	450 A	450 A
	CXD-322A-2V	245 A	322 A	600 A	600 A

Model		Input Current		Class J Fuse Size	Breaker Size
		Constant Torque	Variable Torque		
$\begin{gathered} 380 \mathrm{~V} \\ 480 \mathrm{~V} \end{gathered}$	CXD-003A-4V	3.5 A	4.3 A	10 A	10 A
	CXD-004A-4V	4.3 A	6.0 A	10 A	10 A
	CXD-005A-4V	5.9 A	8.1 A	15 A	15 A
	CXD-008A-4V	8.7 A	12.4 A	25 A	25 A
	CXD-010A-4V	14 A	16 A	30 A	30 A
	CXD-013A-4V	15.5 A	20 A	40 A	40 A
	CXD-018A-4V	17 A	22 A	40 A	40A
	CXD-024A-4V	20 A	26 A	50 A	50 A
	CXD-032A-4V	25 A	35 A	60 A	60 A
	CXD-038A-4V	35 A	42 A	75 A	75 A
	CXD-045A-4V	40 A	50 A	100 A	100 A
	CXD-060A-4V	47 A	66 A	125 A	125 A
	CXD-073A-4V	63 A	80 A	150 A	150 A
	CXD-091A-4V	74 A	91 A	175 A	175 A
	CXD-110A-4V	101 A	110 A	250 A	250 A
	CXD-150A-4V	114 A	150 A	300 A	300 A
	CXD-180A-4V	157 A	180 A	300 A	300 A
	CXD-220A-4V	167 A	220 A	400 A	400 A
	CXD-260A-4V	207 A	260 A	500 A	500 A
	CXD-310A-4V	240 A	310 A	600 A	600 A
	CXD-370A-4V	300 A	370 A	600 A	600 A
	CXD-460A-4V	380 A	460 A	800 A	800 A
	CXD-530A-4V	400 A	530 A	1000 A	1000 A
	CXD-616A-4V	494 A	616 A	1200 A	1200 A
	CXD-683A-4V	555 A	683 A	1350 A	1350 A
	CXD-770A-4V	625 A	770 A	1500 A	1500 A
$\begin{aligned} & \text { 575V } \\ & \text { \} } \\ {600 \mathrm{~V}} \end{aligned}$	CXD-003A-6V	3.1 A	3.8 A	7 A	7 A
	CXD-004A-6V	4.5 A	5.4 A	10 A	10 A
	CXD-006A-6V	7.2 A	10.2 A	15 A	15 A
	CXD-009A-6V	12.3 A	14.9 A	25 A	25 A
	CXD-012A-6V	15 A	16.9 A	32 A	32 A
	CXD-018A-6V	18 A	21.3 A	50 A	50 A
	CXD-024A-6V	22.8 A	26.3 A	63 A	63 A
	CXD-030A-6V	29 A	36 A	70 A	70 A
	CXD-036A-6V	36 A	43 A	80 A	80 A
	CXD-045A-6V	43 A	54 A	100 A	100 A
	CXD-054A-6V	45 A	51 A	100 A	100 A
	CXD-067A-6V	54 A	64 A	125 A	125 A
	CXD-086A-6V	66 A	84 A	175 A	175 A
	CXD-104A-6V	84 A	102 A	200 A	200 A
	CXD-125A-6V	102 A	122 A	250 A	250 A
	CXD-150A-6V	122 A	147 A	300 A	300 A

Model		Input Current		Class J Fuse Size	Breaker Size
		Constant Torque	Variable Torque		
$\begin{aligned} & 575 \mathrm{~V} \\ & \text { 690V } \end{aligned}$	CXD-180A-6V	148 A	178 A	350 A	350 A
	CXD-220A-6V	178 A	217 A	400 A	400 A
	CXD-290A-6V	222 A	292 A	450 A	450 A
	CXD-350A-6V	292 A	353 A	500 A	500 A
	CXD-430A-6V	353 A	454 A	700 A	700 A
	CXD-465A-6V	388 A	469 A	800 A	800 A
	CXD-590A-6V	504 A	595 A	1250 A	1250 A
	CXD-675A-6V	681 A	681 A	1400 A	1400 A

Wire Sizing

Size power wire to maintain a voltage drop less than 2\% at VFD or motor terminals.
NOTE: Output reactors or filters are not required for 200/230V applications.
Frame A: Use only copper conductors rated for at least $75^{\circ} \mathrm{C}$ and 600 V . Use cable with a $90^{\circ} \mathrm{C}$ rating if ambient environment is greater than $50^{\circ} \mathrm{C}$.

Frame B and above: Use only copper conductors rated for at least $75^{\circ} \mathrm{C}$ and 600 V . Use cable with a $90^{\circ} \mathrm{C}$ rating if ambient environment is greater than $40^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{C}\right.$ for models CXD-061A-2V, CXD-105A-2V, or CXD-370A-4V).

460 and 575 V applications: Install a load (output) reactor to protect motor windings if distance from VFD to a motor is in the range 45-100 ft (13.7-30.5 m). Install output dV/dt filter for a range 100-1000 ft (13.7304.8 m) or a sine wave filter for greater distances.

- For submersible pumps, install the output dV/dt filter for $800 \mathrm{ft}(243.8 \mathrm{~m})$.

Motor Cable Lengths for Submersible Pumping Applications

Refer to the Franklin Electric AIM Manual for wire gauge and distance information.

Suggested Maximum Motor Cable Lengths for Non-Submersible Applications

- Without output reactor: 13.7 m (45 ft)
- With output reactor: 30.5 m (100 ft)
- With dV/dt filter: 305 m (1000 ft)

Power Wiring Connections

AWARNING

Contact with hazardous voltage could result in death or serious injury.

- Disconnect and lock out all power before installing or servicing equipment.
- Always check if $D C$ bus charge LED is off and $D C$ voltage on the terminals $D C(+1)$ and $D C(-)$ is less than 3OVDC before working on VFD wiring. The DC bus capacitors may hold high-voltage charge for several minutes after the VFD power is disconnected.
- Connect the motor, the drive, metal plumbing, and all other metal near the motor or cable to the power supply ground terminal using wire no smaller than motor cable wires.
- All wiring must comply with the National Electrical Code and local codes.

NOTICE

Risk of damage to VFD, or malfunction can occur.

- Do not connect input power to VFD output terminals U, V, and W otherwise VFD can be damaged.
- Ensure that the system is properly grounded all the way to the service entrance panel. Improper grounding may result in loss of voltage surge protection and interference filtering.
- Do not connect any wires except dynamic braking resistor to (B 1) and (B2) terminals.
- Do not remove the jumper between terminals (2+) and (1+) except for dynamic braking unit or DC link choke, otherwise the VFD can be damaged.
- When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200 mA or above and not less than 0.1-second operation time to avoid nuisance tripping.

Power Wiring Diagram

1. Branch Protection, Power
2. VFD
3. Motor
4. Ground Terminals
5. Power input terminals
6. Output to Motor terminals
7. Jumper (optional DC reactor, dynamic brake or DC choke unit)
8. Optional brake resistor terminals

Use ring type terminals for the VFD power wiring.
Power line ground and motor ground wires should be connected to designated ground terminals.
Three-phase power, including Open-Delta, must be connected to the R(L1), S(L2), and T(L3) terminals. Proper phase sequencing is not required.

- For single-phase power, connect L 1 to R and L 2 to S terminals.
- A, B, C, and D frame VFDs have single pole connections.
- E and F frame VFDs have double-pole power terminals or lugs to accommodate two smaller gauge wires.
- G frame VFDs have four-pole connections on the input and double-pole connections on the output.
- H frame VFDs have four-pole power terminals.

Connect three-phase motor wires to the $\mathrm{U}(\mathrm{T} 1), \mathrm{V}(\mathrm{T} 2)$, and $\mathrm{W}(\mathrm{T} 3)$ terminals. When in forward rotation, the motor shaft should turn clockwise when viewed from the motor to the load. If rotation is not correct, reverse any two motor leads.

Frame	Maximum Terminal Wire Size	Torque
Frame A	8 AWG	$17.4 \mathrm{in}-\mathrm{lbs}(1.96 \mathrm{Nm})$
Frame B	4 AWG	$30.4 \mathrm{in}-\mathrm{lbs}(3.43 \mathrm{Nm})$
Frame C	$1 / 0 \mathrm{AWG}$	$69.4 \mathrm{in}-\mathrm{lbs}(7.84 \mathrm{Nm})$
Frame D0	$2 / 0 \mathrm{AWG}$	$69.4 \mathrm{in}-\mathrm{lbs}(7.84 \mathrm{Nm})$
Frame D	300 MCM or 4/0 AWG	$156 \mathrm{in}-\mathrm{lbs}(18 \mathrm{Nm})$
Frame E	$4 / 0 \mathrm{AWG}^{* 2}$	$174 \mathrm{in}-\mathrm{lbs}(20 \mathrm{Nm})$
Frame F	$300 \mathrm{MCM}^{*} 2$ or 4/0 AWG*2	$156 \mathrm{in}-\mathrm{lbs}(18 \mathrm{Nm})$
Frame G, Terminals R, S, \& T	$250 \mathrm{MCM}^{*} 4$	$156 \mathrm{in}-\mathrm{lbs}(18 \mathrm{Nm})$
Frame G, Terminals U, V, \& T	$500 \mathrm{MCM}^{* 2}$	$354 \mathrm{in}-\mathrm{lbs}(40 \mathrm{Nm})$
Frame H	$350 \mathrm{MCM}^{*} 4$	$156 \mathrm{in}-\mathrm{lbs}(18 \mathrm{Nm})$

Control Circuit Connections

Terminal Identification

The control board is divided into 5 groups of terminals and connectors, plus a group of micro switches that control individual terminal configurations.

- Always insulate bare control or shield wires with shrink tubing or electrical tape to prevent short circuit.
- The ideal length of stripped wire for control terminals is 5 mm .

1. Analog Inputs/Outputs - These connections are used for transducers, sensors, and control systems such as a BAS, BMS, or PLC. Use shielded cable with shield connected to the ground \perp terminal. Terminals accept 26-16 AWG (0.13~1.3mm²) wires, and should be tightened to a torque of 1.73 Ib -in (0.19 Nm).

- ACI is a 0-10 VDC or 4-20 mA input, adjustable by micro switch. Set ACI Input Sel [10-00] to match the switch setting. Default $=4-20 \mathrm{~mA}$.
- AVI1 is a 0-10 VDC or 4-20 mA input, adjustable by micro switch. Set AVII Input Sel [10-05] to match the switch setting. Default $=0-10 \mathrm{~V}$.
- AVI2 is a 0-10VDC input.

When an input source has been connected, select the appropriate terminal in either Auto Speed Ref [SET-07], Hand Speed Ref [SET-09], or PID F/B Source [SET-18].

- AFM1 \& AFM2 are programmable, multi-function analog outputs. Refer to AFMI Out Select [10-59] and AFM2 Out Select $[10-61]$ for options. Each output can be set by micro switch to $0-10 \mathrm{~V}$ (min load $5 \mathrm{k} \Omega$ at 2 mA) or 0/4-20 mA (max load 500Ω).
- +10V terminal (with common ACM) provides a +10 VDC 50 mA power supply for input devices.
- ACM terminals are the common for analog inputs, outputs, and +10 VDC power supply. All ACM terminals are connected internally.
IMPORTANT: DCM and ACM terminals are isolated from each other and from the ground. Do not connect these terminals to earth ground, which can cause electrical noise in control circuits and unstable VFD operation.

2. Digital Inputs \& RS-485 Communication - These connections provide input for a wide selection of switches or programmable controls. Use shielded cable or twisted wires for 24 VDC digital control circuits wiring and separate these wires from the main power and motor wiring and other high voltage circuits. Terminals accept wire sizes from 26~16 AWG ($0.2 \sim 1.5 \mathrm{~mm}^{2}$), and should be tightened to a torque of 6.9 lb -in (0.78 Nm).

- Digital inputs are configured for NPN (Sink) mode by default, with a jumper across +24 and COM terminals. Refer to "NPN and PNP Digital Inputs Configuration" on page 48.
- All digital inputs can be re-programmed from Normally Open to Normally Closed.
- Digital inputs are activated by voltage 11 VDC or greater. Maximum input voltage rating is 27 VDC at 3.5 mA .
- MII-MI8 are programmable, multi-function digital inputs that can be used for a variety of switching features with common terminal DCM. Refer to MII Define [10-21] through M18 Define [10-28] for options.
NOTE: MII FWD and REV behave as "No Function"
- FWD \& REV are dedicated Forward and Reverse run commands. If any digital input is programmed for FWD or REV, corresponding dedicated FWD or REV input will be disabled automatically.
- SG+, SG-, \& SGND are RS485 communication terminals for PLC, Modbus, or BACnet. Use PIC Com Type [PLC-23] to set the com type. Termination resistance is controlled by micro switch. Set the 485 switch to the Down position to connect 120Ω termination resistance for long distance or for an electrically noisy environment.
- +24 terminal provides 24 VDC (with DCM common) 50 mA power for digital control circuits and 150 mA for external transducers.
- COM terminal is a digital inputs common. By default, it is connected by jumper to +24 to configure NPN (Sink) mode.
- DCM is the internal 24 VDC power supply common.
- $\quad \perp$ Earth ground. Use this terminal to connect shield wires.

IMPORTANT: DCM and ACM terminals are isolated from each other and from the ground. Do not connect these terminals to earth ground, which can cause electrical noise in control circuits and unstable VFD operation.
3. Relay Outputs - These are configurable, multi-function, dry contact relays. Refer to Relay RA1 [0-47] through Relay RA3 [10-49] for options. Terminals accept wire sizes from 26~16 AWG (0.2~1.5mm²), and should be tightened to a torque of $4.3 \mathrm{lb}-\mathrm{in}(0.49 \mathrm{Nm}$).

- Relays ratings are 1.25 A at 250 VAC , or 3 A at 30 VDC .
- RA1-RB1-RC1 is a single-pole, double throw relay. RA1-RC1 is N.O. (normally open), and RB1-RC1 is N.C. (normally closed).
- RA2-RC2 and RA3-RC3 are independent single pole, single throw, normally open relays.

4. Safety Torque Off (STO) Inputs - These connections provide emergency stop control from an external system. By default, the inputs are closed through jumper wires, allowing the drive to run.
5. RJ-45 Sockets - These connections are communication terminals for PLC, Modbus, or BACnet. Use PLC Com Type [PLC-23] to set the Com Type. Then set both Speed Reference and Run Command to RS485. Both RJ-45 sockets and terminals (SG+, SG-, \& SGND) are connected internally.

Example Configurations

4-20mA Speed Control Signal from an External BMS or PLC:

- Connect the BMS or PLC output signal to the ACl or AVII terminal. The ACI micro switch should be in the UP position. If using the AVI1 terminal, the AVI1 micro switch should be DOWN.
- Connect the BMS Com wire to the ACM terminal (signal ground).
- Any shield wire should be connected to \perp Earth ground.
- ACI Input Sel [$[0-00]$ or AVII Input Sel [$[0-05]$ should be set to the correct signal type.
- Auto Speed Ref [SET-07] should be set to the chosen input.

0-10V Speed Control Signal from an External BMS or PLC:

- Connect the BMS or PLC output signal to the AVII, AVI2, or ACI terminal. The AVII micro switch should be in the UP position. If using the ACI terminal, the ACI micro switch should be DOWN.
- Connect the BMS Com wire to the ACM terminal (signal ground).
- Any shield wire should be connected to $\stackrel{\perp}{=}$ Earth ground.
- ACI Input Sel [10-00] or AVII Input Sel [10-05] should be set to 0-10V.
- Auto Speed Ref [SET-07] should be set to the chosen input.

4-20mA Transducer with VFD 10 VDC Power:

- Connect the transducer positive (Power) wire to the VFD +10 V terminal.
- Connect the transducer output (Out) wire to the ACl or AVII terminal. The ACI micro switch should be in the UP position. If using the AVII terminal, the AVII micro switch should be DOWN.
- Any shield wire should be connected to \perp Earth ground.
- ACI Input Sel [$[0-00]$ or AVII Input Sel [$10-05$] should be set to the correct signal type.
- Auto Speed Ref [SET-07] should be set to PID Output, PID F/B Source

[SET-18] should be set to the chosen input, and PID F/B Unit [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

4-20mA Transducer with VFD 24 VDC Power:

- Connect the transducer positive (Power) wire to the VFD +24 V terminal.
- Connect the transducer output (Out) wire to the ACl or AVII terminal. The ACl micro switch should be in the UP position. If using the AVII terminal, the AVII micro switch should be DOWN.
- Use a jumper wire to connect the ACM and DCM terminals.
- Any shield wire should be connected to $\stackrel{\perp}{=}$ Earth ground.
- ACI Input Sel [$[0-00]$ or AVII Input Sel [10-05] should be set to the correct signal type.

- Auto Speed Ref [SET-07] should be set to PID Output, PID F/B Source [SET-18] should be set to the chosen input, and PID F/B Unit [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

ELECTRICAL INSTALLATION

Control Circuit Connections

4-20mA Transducer with External 24 VDC Power:

- Connect the transducer positive (Power) wire to the external source positive [+24V]. Connect the external source negative to the VFD ACM terminal.
- Connect the transducer output (Out) wire to the ACl or AVII terminal. The ACl micro switch should be in the UP position. If using the AVII terminal, the AVII micro switch should be DOWN.
- Any shield wire should be connected to $\stackrel{\perp}{=}$ Earth ground.
- ACI Input Sel [$10-00]$ or AVII Input Sel [10-05] should be set to the correct signal type.

- Auto Speed Ref [SET-07] should be set to PID Output, PID F/B Source [SET-18] should be set to the chosen input, and PID F/B Unit [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

0-10VDC Transducer with VFD 10 VDC Power:

- Connect the transducer positive (Power) wire to the VFD +10 V terminal.
- Connect the transducer output (Out) wire to the AVII, AVI2, or ACI terminal. The AVII micro switch should be in the UP position. If using the ACI terminal, the ACI micro switch should be DOWN.
- Connect the transducer Com wire to the ACM terminal (signal ground).
- Any shield wire should be connected to $\stackrel{\perp}{=}$ Earth ground.
- ACI Input Sel [10-00] or AVII Input Sel [IO-05] should be set to 0-10V.

- Auto Speed Ref [SET-07] should be set to PID Output, PID F/B Source [SET-18] should be set to the chosen input, and PID F/B Unit [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

0-10VDC Transducer with VFD 24 VDC Power:

- Connect the transducer positive (Power) wire to the VFD +24 V terminal.
- Connect the transducer output (Out) wire to the AVII, AVI2, or ACI terminal. The AVII micro switch should be in the UP position. If using the ACI terminal, the ACI micro switch should be DOWN.
- Connect the transducer Com wire to the ACM terminal (signal ground).
- Use a jumper wire to connect the ACM and DCM terminals.

- Any shield wire should be connected to $\stackrel{\perp}{=}$ Earth ground.
- ACI Input Sel [10-00] or AVII Input Sel [10-05] should be set to 0-10V.
- Auto Speed Ref [SET-07] should be set to PID Output, PID F/B Source [SET-18] should be set to the chosen input, and PID F/B Unit [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

0-10VDC Transducer with External 24 VDC Power:

- Connect the transducer positive (Power) wire to the external source positive [+24V].
- Connect the transducer Com wire to the external source negative.
- Connect the transducer output (Out) wire to the AVII, AVI2, or ACI terminal. The AVII micro switch should be in the UP position. If using the ACI terminal, the ACl micro switch should be DOWN.
- Any shield wire should be connected to $\stackrel{\perp}{=}$ Earth ground.

- ACI Input Sel [10-00] or AVII Input Sel [IO-05] should be set to 0-10V.
- Auto Speed Ref [SET-07] should be set to PID Output, PID F/B Source [SET-18] should be set to the chosen input, and PID F/B Unit [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

Temperature Protection or PID Control with PT-100 or PTC Sensor:

- Connect the sensor Positive wire to the AFM2 terminal. Place the AFM2 micro switch in the DOWN position.
- Connect the sensor Negative wire to the ACM terminal.
- Use a jumper wire to connect the AFM2 and AVI1 terminals. The AVI1 micro switch should be in the UP position.
- Any shield wire should be connected to $\xlongequal[=]{\perp}$ Earth ground.
- For PT100, AVII Input Sel [10-05] should be set to PT100 \& AFM2.

- If using PT100 for PID Feedback, Spare Sensor, or Aux Sensor, set the max value to $200^{\circ} \mathrm{C}$.

Speed Control using 0-10 VDC Potentiometer:

- Connect the potentiometer Positive wire to the VFD +10V terminal.
- Connect the potentiometer Output wire to the AVI1, AVI2, or ACI terminal. The AVI1 micro switch should be in the UP position. If using the ACI terminal, the ACI micro switch should be DOWN.
- Connect the potentiometer Com wire to the ACM terminal (signal ground).
- Any shield wire should be connected to \perp Earth ground.
- ACI Input Sel [10-00] or AVII Input Sel [10-05] should be set to 0-10V.

- Auto Speed Ref [SET-07] or Hand Speed Ref [SET-09] should be set to the chosen input.

Relay switching to control an external starter, contactor, or other system:

- Connect the incoming power to the RC terminal.
- Wire the corresponding RA terminal to the external application.
- Set the relay control, Relay RA1, $-2,-3$ [10-47, $-48,49]$.

NOTE: Illustration example uses 120 V , relay 1 , and a run light application.

External HOA switch:

- Connect two MI terminals to DCM and the HOA switch.
- Wire a normally open run contact to DCM and FWD terminals.
- MI_Define [10-21, -22,...-28] of the two terminals should be set to 1) HOA-HAND, and 2) HOAAUTO.
- Put HOA Mode Source [SET_60] to Digital Input.

NOTE: Factory-installed drives use MI7 for Hand and MI8 for Auto.

NPN and PNP Digital Inputs Configuration

Cerus X-Series drive control can be configured to Sink (NPN) or Source (PNP) modes by providing proper wiring and installing/removing jumper on terminals +24 , COM and DCM.

The picture above shows four possible digital inputs configurations:

1. Sink (NPN) mode with internal 24VDC power source (Default). Install jumper between +24 and COM terminals. Connect dry contact or NPN transistor output from external control device to desired digital input and DCM terminals. When contact is closed or transistor is in conducting state, digital input will be activated by internal power supply.
2. Source (PNP) mode with internal 24VDC power source. Install jumper between DCM and COM terminals. Connect dry contact or PNP transistor output from external control device to desired digital input and +24 terminals. When contact is closed or transistor is in conducting state, digital input will be activated by internal power supply.
3. Sink (NPN) mode with external 24VDC power source. Remove any jumpers between +24 and COM or DCM and CM terminals. Connect positive terminal of external power supply to COM terminal. Connect dry contact or NPN transistor output from external control device to desired digital input and negative terminal of external power supply. When contact is closed or transistor is in conducting state, digital input will be activated by external power supply.
4. Source (PNP) mode with external 24VDC power source. Remove any jumpers between +24 and COM or DCM and CM terminals. Connect negative terminal of external power supply to COM terminal. Connect dry contact or PNP transistor output from external control device to desired digital input and positive terminal of external power supply. When contact is closed or transistor is in conducting state, digital input will be activated by external power supply.

DRIVE PROGRAMMING

Using the Keypad

Home Screen Display Options

4. Display Line 1 [SET-57] Use Arrow and Enter keys to step through selections and to change setpoints.
$\mathrm{H}=$ Output speed when running (Hz).
$P=$ PID Set-point [SET-21] in application based units (PSI, inWC, etc.). This is adjustable using the keypad.
F = Keypad Speed Reference (Hz) when Auto Speed Ref [SET-07] or Hand Speed Ref [SET-09] is set to Keypad. This is adjustable using the keypad.
5. Display Line 2 Displays motor current.
6. Display Line 3 [SET-58] Use Arrow keys to step through choices. This display corresponds to choices in [SET-57].

Setting Operating Parameters

Enter Required Parameters Before Starting VFD

1. Application Sel [SET-00]: Use the keypad to select the type of application the drive will control. When a selection has been made, application related parameters will be automatically updated to proper defaults. Enter the following parameters to ensure best performance for the specific installation.
NOTE: the BASIC application provides standard VFD control with start/stop command from digital inputs and speed reference from a remote analog signal. For systems using a transducer or other control sensors, choose the relevant application type to ensure that correct defaults are set.

Main Menu

Param Groups - 00:SET

01:VFD 02:10

NOTE: When using a FE MagForce or other permanent magnet motor application, refer to "Operation with Permanent Magnet Motors" on page 99.
2. Input Phase [SET-01]: Verify that the setting matches the type of power supply-3phase (default).
3. Motor HP [SET-02]: Enter the rated horsepower from the motor nameplate.
4. Motor FLA (SFA) [SET-03]: Enter the FLA (Full Load Amps) rating from the motor nameplate, or enter SFA (Service Factor Amps) if using a submersible pump motor.
5. Motor RPM [SET-04]: Enter the rated motor RPM from the motor nameplate.
6. Motor Voltage [SET-05]: Enter the rated voltage from the motor nameplate.
7. Motor Freq Sel [SET-06]: Select the standard motor frequency (either 50 or 60 Hz).

Set Menu

SET $00-00$
Application Sel
Input Phase
Motor HP

Verify Default Settings

After the initial parameters have been entered, the following default settings should be checked and, if necessary, adjusted to ensure expected operation. Refer to the "Default Settings Table - SET Menu" on page 52 for a list of automatically populated settings per application.

1. VFD Max Freq [VFD-00]: The highest frequency (speed) allowable. If running a FE MagForce pump, this should be set to the calculated electrical frequency corresponding to the target pump RPM. Refer to "Setup FE MagForce Pump Motor" on page 100.
2. VFD Base Freq [VFD-02]: This should be set to the motor nameplate frequency rating.
3. Auto Speed Ref [SET-07]: This is the source of frequency (speed) setpoint the drive will use when in Auto mode.

- When using one of the analog inputs with an automated BAS, BMS, or PLC system, be sure to configure the terminal for the correct signal type. Refer to "Terminal Identification" on page 43.
- When using feedback from a sensor or transducer, select PID Output. When PID mode is selected, additional parameters must be verified for setpoints, inputs, and limits.
- When set to Keypad, the drive will run at the Keypad Speed Reference (F on display).

4. Auto Run Cmd [SET-08]: The source of RUN command when VFD is in Auto Mode-Keypad or external.
5. Hand Speed Ref [SET-09]: The source of frequency (speed) setpoint the drive will use when in Hand mode. PID is disabled in Hand mode. Be sure to configure any selected input terminals for the correct signal type.

- When set to Keypad, the drive will run at the Keypad Speed Reference (F on display).

6. Hand Run Cmd [SET-10]: The source of RUN command when VFD is in Hand Mode-Keypad or external.
7. Accel Time [SET-11]: The time in seconds for drive to ramp up from stop to maximum frequency. Recommended defaults are 2 seconds for submersible pump motors and 20 seconds for most other applications. Additional acceleration curves can be added for more precise control through selected frequency ranges. Refer to "Acceleration/Deceleration Control" on page 82.
8. Decel Time [SET-12]: The time in seconds to slow down from maximum frequency to stop. Recommended defaults are 2 seconds for submersibles and 30 seconds for surface/booster pumps. This setting is only effective when Stop Mode [SET-16] is set to Decel to Stop. Additional deceleration curves can be added for more precise control through selected frequency ranges. Refer to "Acceleration/Deceleration Control" on page 82.
9. Low Freq Limit [SET-13]: The lowest frequency (speed in Hz) allowed by the VFD in any mode.
10. High Freq Limit [SET-14]: The highest frequency (speed in Hz) allowed by the VFD in any mode.
11. PID Mode [SET-17]: Enables or disables PID control, either direct or inverse.
12. PID F/B Source [SET-18]: The input terminal for PID Feedback source. Be sure to configure the terminal for the correct signal type.
13. PID F/B Unit [SET-19]: Selects a measurement unit for PID feedback.
14. PID F/B Max [SET-20]: The maximum reading of the feedback source. This is used to scale the analog signal to transducer. For example: if using a 0-200 psi transducer, the value should be 200.
15. PID Set-point [SET-21]: The desired value for the drive to maintain in PID mode while running in Auto. This parameter can also be changed through keypad on Line-1 of the display (value P).
16. PID Low Hz Limit [SET-22]: Minimum PID frequency output will be limited to this value.
17. PID High Hz Limit [SET-23]: Maximum PID frequency output will be limited to this value.
18. Language: Select a desired language for the display. Press the Menu button and then press the Back button. Use the Down key to scroll to 5_Set Language.
19. Clock: Current time and date. This setting is used to record real-time data for faults, parameter changes, etc. To adjust, press the Menu button and then press the Back button. Use the Down key to scroll to 6_Set Time.

Verify Control Terminal Settings

For each type of control hardware that has been connected to the system-sensors, switches, BAS, etc., make sure that the matching function parameters have been identified for the input terminals. For more information, refer to "Example Configurations" on page 45 or to "Parameter Descriptions > $1 / 0$ Menu" on page 215.

Enter or Verify Optional Settings

If using any of the optional features available in the system, make sure that all related parameters are set for the desired operation. Refer to the application descriptions in "Operation" on page 67 for information about these features:

- Automation features: Refer to "Standard Operation with an Automated Control System" on page 70.
- Protection features: Refer to "Protection Features" on page 90.
- Maintenance features: Refer to "Standard Operation with an Automated Control System" on page 70.
- Communications features: Refer to "Communications" on page 115.
- Multi-Motor applications: Refer to "Multi-Motor Configurations" on page 107.
- Multi-Drive applications: Refer to "Multi-Drive Configurations" on page 109.

For more details on individual parameter settings, refer to "Parameter Reference Tables" on page 207.

Default Settings Table - SET Menu

Parameters in highlighted rows are reset when the application is changed [SET-00].

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
SET-01	Input Phase	3-Phase									
SET-02	Motor HP	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$
SET-03	Motor FLA (SFA)	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$				
SET-04	Motor RPM	1750	1750	1750	1750	1750	3450	1750	1750	3600	3450
SET-05	Motor Voltage	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$
SET-06	Motor Freq Sel *	60 Hz									
SET-07	Auto Speed Ref	ACI Analog	PID Output	ACl Analog	PID Output	ACl Analog					
SET-08	Auto Run Cmd	Digital Input	Keypad								
SET-09	Hand Speed Ref	Keypad									
SET-10	Hand Run Cmd	Keypad									
SET-11	Accel Time	20 Sec	2 Sec	20 Sec	20 Sec	2 Sec	20 Sec				
SET-12	Decel Time	30 Sec	2 Sec	30 Sec	30 Sec	2 Sec	30 Sec				
SET-13	Low Freq Limit	20 Hz	30 Hz	20 Hz	0 Hz	60 Hz	40 Hz				
SET-14	High Freq Limit	60 Hz	120 Hz	120 Hz							
SET-15	Load Rotation	FWD Only	FWD \& REV	FWD Only							
SET-16	Stop Mode	Coast	Coast	Coast	Coast	Decel	Coast	Coast	Decel	Coast	Coast
SET-17	PID Mode	Disable	PID Direct	PID Inverse	PID Inverse	PID Direct					
SET-18	PID F/B Source	ACI	ACI	ACl	ACI						
SET-19	PID F/B Unit	inWC	inWC	inWC	${ }^{\circ} \mathrm{F}$	PSI	PSI	inWC	PSI	PSI	inWC
SET-20	PID F/B Max	1 inWC	1 inWC	1 inWC	$150^{\circ} \mathrm{F}$	100 PSI	100 PSI	406.9 inWC	100 PSI	100 PSI	1 inWC
SET-21	PID Set-point	0.5 inWC	0.5 inWC	0.5 inWC	$76{ }^{\circ} \mathrm{F}$	60 PSI	60 PSI	60 inWC	60 PSI	60 PSI	0.5 inWC
SET-22	PID Lo Hz Limit	20 Hz	30 Hz	20 Hz	20 Hz	60 Hz	40 Hz				
SET-23	PID Hi Hz Limit	60 Hz	120 Hz	120 Hz							
SET-24	PID P-Gain	1\%	1\%	1\%	1\%	2\%	2\%	1\%	1\%	2\%	1\%
SET-25	PID I-Time	1 Sec	0.5 Sec	0.5 Sec	1 Sec						
SET-26	Sleep Mode	Disabled	Disabled	Disabled	Disabled	Sleep Only	Sleep Only	Disabled	Disabled	Sleep Only	Disabled
SET-27	Sleep Chk Time	10 Sec									
SET-28	Sleep Delay Time	6 Sec									
SET-29	S-Boost Value	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%
SET-30	Sleep Boost Timer	10 Sec									
SET-31	Wake-Up Level	0.45 inWC	0.5 inWC	0.5 inWC	$75^{\circ} \mathrm{F}$	55 PSI	55 PSI	55 inWC	55 PSI	55 PSI	0.5 inWC
SET-32	S-Bump Timer	5 Sec									
SET-33	Pipe Fill Timer	0 Min	3 Min	0 Min							
SET-34	Pipe Fill Exit Level	0.4 inWC	0.4 inWC	0.4 inWC	$74^{\circ} \mathrm{F}$	25 PSI	25 PSI	25 inWC	25 PSI	25 PSI	0.4 inWC
SET-35	Pipe Fill Freq	47 Hz	95 Hz	95 Hz							
SET-36	Broken Pipe Lvl	0 inWC	0 inWC	OinWC	$0^{\circ} \mathrm{F}$	15 PSI	15 PSI	0 inWC	0 PSI	15 PSI	0.4 inWC
SET-37	Broken Pipe Freq	59.5 Hz	114 Hz	114 Hz							
SET-38	Broken Pipe Dly	180 Sec									
SET-39	OverPress Set	Disabled	Disabled	Disabled	Disabled	OP Auto Reset	OP Auto Reset	Disabled	OP Auto Reset	OP Auto Reset	Disabled
SET-40	OverPress Lvl	1 inWC	1 inWC	1 inWC	$80^{\circ} \mathrm{F}$	80 PSI	80 PSI	80 inWC	80 PSI	80 PSI	1 inWC
SET-41	ULD Select	By Current	By Torque	By Torque							
SET-42	ULD Level	45\%	45\%	45\%	45\%	45\%	70\%	45\%	45\%	60\%	45\%
SET-43	ULD Frequency	30 Hz	59 Hz	30 Hz	20 Hz	60 Hz	40 Hz				
SET-44	ULD Delay	2 Sec									
SET-45	ULD Recovery T	0 Min	0 Min	0 Min	0 Min	30 Min	30 Min	0 Min	0 Min	30 Min	0 Min
SET-46	ULD Recover Cnt	Read Only									

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
SET-47	HLD Select	By Current	By Torque	By Torque							
SET-48	HLD Level	110\%	110\%	110\%	110\%	110\%	110\%	110\%	150\%	110\%	110\%
SET-49	HLD Frequency	20 Hz	30 Hz	20 Hz	20 Hz	60 Hz	40 Hz				
SET-50	HLD Delay	2 Sec	5 Sec	2 Sec							
SET-51	HLD Recovery T	0 Min									
SET-52	HLD Recover Cnt	Read Only									
SET-53	ACC Change Frea	0 Hz	60 Hz	0 Hz							
SET-54	Second ACC	60 Sec	5 Sec	60 Sec							
SET-55	Second DEC	60 Sec	5 Sec	60 Sec							
SET-56	ACC/DEC Hyst	0 Hz	1 Hz	0 Hz	0 Hz	1 Hz	0 Hz				
SET-57	Display Line 1	Frea Command	Freq Command	Frea Command	Freq Command	Frea Command	Freq Command				
SET-58	Display Line 3	$\begin{gathered} \text { PID } \\ \text { Feedback \% } \end{gathered}$	$\begin{array}{c\|} \hline \text { PID } \\ \text { Feedback \% } \end{array}$	$\begin{array}{c\|} \text { PID } \\ \text { Feedback \% } \end{array}$	$\begin{array}{c\|} \hline \text { PID } \\ \text { Feedback \% } \end{array}$	PID Feedback \%	PID Feedback \%	PID Feedback \%	$\begin{gathered} \text { PID } \\ \text { Feedback \% } \end{gathered}$	$\begin{gathered} \text { PID } \\ \text { Feedback \% } \end{gathered}$	$\begin{gathered} \text { PID } \\ \text { Feedback \% } \end{gathered}$
SET-59	Keypad Freq	60 Hz	10 Hz	115 Hz	115 Hz						
SET-60	HOA Mode Source	Keypad									
SET-61	KPD STOP as OFF	Disable									
SET-62	Carrier Freq	2 kHz									
SET-63	2/3-Wire Select	2-Wire Fwd/Rev	$\begin{gathered} \text { 2-Wire Fwd/ } \\ \text { Rev } \end{gathered}$	2-Wire Fwd/Rev	2-Wire Fwd/Rev	2-Wire Fwd/Rev	2-Wire Fwd/Rev				

* If Motor Freq Sel [SET-06] is changed to 50 Hz , all output frequency related parameters are adjusted. Refer to "Default Settings Table - Frequency Defaults with 50 Hz " on page 64.

Default Settings Table - VFD Menu

Parameters in highlighted rows are reset when the application is changed [SET-00].

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
VFD-00	VFD Max Freq	60 Hz	120 Hz	120 Hz							
VFD-01	VFD Start Freq	0.50 Hz									
VFD-02	VFD Base Freq	60 Hz	120 Hz	120 Hz							
VFD-03	V/F Pattern	Linear									
VFD-04	Step Freq-1	0.0 Hz									
VFD-05	Step Freq-2	0.0 Hz									
VFD-06	Step Freq-3	0.0 Hz									
VFD-07	Step Freq-4	0.0 Hz									
VFD-08	Step Freq-5	0.0 Hz									
VFD-09	Step Freq-6	0.0 Hz									
VFD-10	Step Freq-7	0.0 Hz									
VFD-11	Step Freq-8	0.0 Hz									
VFD-12	Step Freq-9	0.0 Hz									
VFD-13	Step Freq-10	0.0 Hz									
VFD-14	Step Freq-11	0.0 Hz									
VFD-15	Step Freq-12	0.0 Hz									
VFD-16	Step Freq-13	0.0 Hz									
VFD-17	Step Freq-14	0.0 Hz									
VFD-18	Step Freq-15	0.0 Hz									
VFD-19	ACC-2 Time	40 Sec	2 Sec	40 Sec	40 Sec	2 Sec	40 Sec				
VFD-20	DEC-2 Time	40 Sec	2 Sec	40 Sec	40 Sec	2 Sec	40 Sec				
VFD-21	ACC-3 Time	60 Sec									
VFD-22	DEC-3 Time	60 Sec									
VFD-23	ACC-4 Time	30 Sec									
VFD-24	DEC-4 Time	40 Sec									

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
VFD-25	S Start Time 1	0 Sec									
VFD-26	S Start Time 2	0 Sec									
VFD-27	S End Time 1	0 Sec									
VFD-28	S End Time 2	0 Sec									
VFD-29	Skip Freq 1 High	0.0 Hz									
VFD-30	Skip Freq 1 Low	0.0 Hz									
VFD-31	Skip Freq 2 High	0.0 Hz									
VFD-32	Skip Freq 2 Low	0.0 Hz									
VFD-33	Skip Freq 3 High	0.0 Hz									
VFD-34	Skip Freq 3 Low	0.0 Hz									
VFD-35	VFD Duty Select	Variable Torque	Constant Torque	Variable Torque	Variable Torque						
VFD-36	Reset Restart	Enable	Disable	Enable	Enable						
VFD-37	DC Brake CurLvl	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
VFD-38	DC Time at Run	0 Sec									
VFD-39	DC Time at Stop	0 Sec									
VFD-40	DC Stop Freq	0.0 Hz									
VFD-41	Dwell T at Acc	0 Sec									
VFD-42	Dwell Hz at Acc	0.0 Hz									
VFD-43	Dwell T at Dec	0 Sec									
VFD-44	Dwell Hz at Dec	0.0 Hz									
VFD-45	Hopping Carrier	Disable									
VFD-46	ID Code	Read Only									
VFD-47	VFD Rated Amps	Read Only									
VFD-49	Firmware Version	Read Only									
VFD-50	Disp Filter A	0.15 Sec	0.1 Sec	0.15 Sec							
VFD-51	Disp Filter KPD	0.15 Sec	0.15 Sec	0.15 Sec	0.1 Sec	0.1 Sec	0.1 Sec	0.15 Sec	0.15 Sec	0.15 Sec	0.15 Sec
VFD-52	FW Date	Read Only									
VFD-53	Jog ACC Time	20 Sec	2 Sec	20 Sec	20 Sec	2 Sec	20 Sec				
VFD-54	Jog DEC Time	30 Sec	2 Sec	30 Sec	30 Sec	2 Sec	30 Sec				
VFD-55	JOG Frequency	6.0 Hz									
VFD-56	Zero-speed Mode	Standby									
VFD-57	Power-on Start	Enable	Disable	Enable	Enable						
VFD-58	H-Carrier Pitch	10 ms									
VFD-60	V/F F-Point 1	0.5 Hz									
VFD-61	V/F V-Point 1	1 V	1 V	1 V	1 V	1 V	1 V	1V	1 V	1V	1 V
VFD-62	V/F F-Point 2	1.5 Hz									
VFD-63	V/F V-Point 2	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V
VFD-64	V/F F-Point 3	3 Hz									
VFD-65	V/F V-Point 3	11 V									

Default Settings Table - I/O Menu

Parameters in highlighted rows are reset when the application is changed [SET-00].

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	$\begin{aligned} & \text { Vacuum } \\ & \text { Pump } \end{aligned}$	Constant Torque	FE MagForce	PM Motor
10-00	ACI Input Sel	4-20mA									
10-01	ACI Loss Trip	Disable	Stop/Start	Stop/Start	Stop/Start	Trip Stop	Trip Stop	Trip Stop	Stop/Start	Stop/Start	Trip Stop
10-02	ACI Loss Level	Below Minimum	Below Minimum	Below Minimum	Below Minimum	$\begin{gathered} \hline \text { Below } \\ 0.5 \times M \text { in } \end{gathered}$	$\begin{gathered} \hline \text { Below } \\ 0.5 \times M \text { in } \end{gathered}$	Below Minimum	Below Minimum	$\begin{gathered} \hline \text { Below } \\ 0.5 \times \mathrm{Min} \end{gathered}$	$\begin{gathered} \hline \text { Below } \\ 0.5 \times M i n \end{gathered}$
10-03	ACI Loss Delay	1 Sec									
10-04	ACI Filter T	0.1 Sec	0.1 Sec	0.1 Sec	0.15 Sec	0.1 Sec	0.15 Sec				
10-05	AVII Input Sel	0-10V									
10-06	AVI1 Loss Trip	Disable									
10-07	AVIILoss Lvl	Below Minimum	Below Minimum	Below Minimum	Below Minimum	$\begin{gathered} \text { Below } \\ 0.5 \times M \text { in } \end{gathered}$	$\begin{gathered} \text { Below } \\ 0.5 \times M \text { in } \end{gathered}$	Below Minimum	Below Minimum	$\begin{gathered} \text { Below } \\ 0.5 \times M i n \end{gathered}$	$\begin{gathered} \text { Below } \\ 0.5 \times M \text { in } \end{gathered}$
10-08	AVI1 Loss Delay	1 Sec									
10-09	AVII Filter T	0.2 Sec									
10-10	AVI2 Filter T	0.2 Sec									
10-11	Spare Max Value	1 inWC	1 inWC	1 inWC	$150{ }^{\circ} \mathrm{F}$	200 PSI	200 PSI	200 inWC	200 PSI	200 PSI	200 inWC
10-12	Spare AI Select	AVII	AVII	AVII	AVI1	AVII	AVII	AVII	AVI1	AVI1	AVII
10-13	F/B PT Status	Read Only									
10-14	PID Filter Time	0.5 Sec									
10-15	PID Delay Time	0 Sec									
10-16	Limit by Level	Disable									
10-17	Max Limit Level	6 Feet	0.9 inWC	0.9 inWC	$140^{\circ} \mathrm{F}$	50 PSI	6 Feet	50 PSI	50 PSI	6 Feet	6 Feet
10-18	Min Limit Level	3 Feet	0.8 inWC	0.8 inWC	$130{ }^{\circ} \mathrm{F}$	40 PSI	3 Feet	40 PSI	40 PSI	3 Feet	3 Feet
10-19	Min Freq Limit	40 Hz	80 Hz	80 Hz							
10-20	DI Filter	0.005 Sec									
10-21	M11 Define	Speed-L	None								
10-22	MI2 Define	Speed-M	None								
10-23	M13 Define	Speed-H	None								
10-24	M14 Define	Fault Reset									
10-25	M15 Define	E-Stop									
10-26	M16 Define	XCEL-L									
10-27	M17 Define	None									
10-28	M18 Define	None									
10-29	F0 Enable	Disable									
10-30	FO Frequency	60 Hz	115 Hz	115 Hz							
10-31	FO Fault Retry	10	10	10	10	10	10	10	10	10	10
10-32	FO Retry Delay	60 Sec									
10-33	FO Mode \& Reset	PID Off Auto	$\begin{aligned} & \text { PID On } \\ & \text { Auto } \\ & \hline \end{aligned}$	PID On Auto	$\begin{aligned} & \text { PID On } \\ & \text { Auto } \end{aligned}$	PID On Auto	PID On Auto	$\begin{aligned} & \text { PID On } \\ & \text { Auto } \end{aligned}$	PID Off Auto	PID On Auto	PID Off Auto
10-34	FO PID S-Point	0 inWC	0 inWC	0 inWC	$0{ }^{\circ} \mathrm{F}$	0 PSI	0 PSI	0 inWC	0 PSI	0 PSI	0 inWC
10-35	Ext Trip Mode	Coast									
10-36	Damper Mode	Disable	Enable	Enable	Disable						
10-37	Damper T-Delay	60 Sec									
10-38	No-Flow Mode	Disable									
10-39	Prime Time	20 Sec									
10-40	No-Flow Freq	20 Hz	30 Hz	20 Hz	20 Hz	60 Hz	40 Hz				
10-41	Lube/S-Clean	Disable									
10-42	S-Clean Timer	60 Min									
10-43	Pre-Lube Timer	30 Sec									
10-44	Run-Lube Timer	0 Sec									
10-45	Post-Lube Timer	0 Sec									
10-46	DI NO/NC	N.O.									

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
10-47	Relay RA1	Fault									
10-48	Relay RA2	Run									
10-49	Relay RA3	FDT-4									
10-50	CNT Attained 0	0	0	0	0	0	0	0	0	0	0
10-51	CNT Attained 1	0	0	0	0	0	0	0	0	0	0
10-52	FDT-2 Freq	60 Hz	115 Hz	115 Hz							
10-53	FDT-2 Bandwdth	2.0 Hz									
10-54	FDT-3 Freq	60 Hz	115 Hz	115 Hz							
10-55	FDT-3 Bandwdth	2.0 Hz									
10-56	I Hi/Lo Setting	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
10-57	FDT-4/5 Setting	3.0 Hz									
10-58	Relay NO/NC	N.O.									
10-59	AFM1 Out Select	Output FREQ	Output FREQ	Output FREQ	Output	$\begin{aligned} & \text { Output } \\ & \text { FREQ } \end{aligned}$	Output FREQ	Output FREQ	$\begin{aligned} & \text { Output } \\ & \text { FREQ } \end{aligned}$	Output FREQ	Output FREQ
10-60	AFM1 Gain	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
10-61	AFM2 Out Select	ACI\%	ACI \%	ACI \%	ACI\%	ACI\%	ACI \%	ACI\%	ACI\%	ACI\%	ACI \%
10-62	AFM2 Gain	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
10-63	AFM1 mA Select	4-20mA									
10-64	AFM2 mA Select	$4-20 \mathrm{~mA}$	4-20mA	4-20mA	4-20mA	4-20mA	4-20mA	4-20mA	$4-20 \mathrm{~mA}$	4-20mA	4-20mA
10-65	AFM1 Filter Time	0.01 Sec									
10-66	AFM2 Filter Time	0.01 Sec									
10-72	FO Bypass	Disable									
10-73	F0 Bypass Delay	0 Sec									
10-74	D-Inputs Status	Read Only									
10-75	D-Relays Status	Read Only									
10-76	AI Loss Freq	40 Hz	80 Hz	80 Hz							

Default Settings Table - ADV Menu

Parameters in highlighted rows are reset when the application is changed [SET-00].

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
ADV-00	Upper Bound Int	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV-01	PID Out Limit	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV-02	Password Input	0	0	0	0	0	0	0	0	0	0
ADV-03	Parameter Reset	None									
ADV-05	Password Lock	Unlocked									
ADV-06	Acc/Dec Type	$\begin{gathered} \text { Linear Acc/ } \\ \text { Dec } \end{gathered}$	Linear Acc/ Dec	Linear Acc/ Dec	Linear Acc/ Dec	$\begin{gathered} \hline \text { Linear Acc/ } \\ \text { Dec } \end{gathered}$	Linear Acc/ Dec				
ADV-07	Acc/Dec Format	Unit 0.1 sec									
ADV-08	Energy Saving	Disable									
ADV-09	E-Saving Gain	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV-10	MMC Mode	Disable									
ADV-11	Motor Quantity	1	1	1	1	1	1	1	1	1	1
ADV-12	$\begin{aligned} & \text { Aux Motor Stop } \\ & \text { Hz } \end{aligned}$	0 Hz									
ADV-13	Alt Run Time	720 Min									
ADV-14	S-Start ON Delay	1 sec									
ADV-15	S-Start Off Delay	1 Sec									
ADV-16	Motor Switch Tmr	10 Sec									
ADV-17	Motor Switch Hz	60 Hz	115 Hz	115 Mz							
ADV-18	Lag Start Frea	59.5 Hz	114 Hz	114 Hz							
ADV-19	Lag Start Delay	10 Sec									
ADV-20	Lag Start Level	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
ADV-21	Lead Freq Drop	10 Hz									

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	$\begin{aligned} & \text { Vacuum } \\ & \text { Pump } \end{aligned}$	Constant Torque	FE MagForce	PM Motor
ADV-22	MMC Decel Time	2 Sec									
ADV-23	Lag Stop Frea	35 Hz	70 Hz	50 Hz							
ADV-24	Lag Stop Delay	4 Sec									
ADV-25	Lag Stop Level	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%
ADV-26	Lead Freq Bump	0.0 Hz									
ADV-27	MMC Accel Time	2 Sec									
ADV-28	Power-On Delay	10 Sec									
ADV-29	Run Delay Timer	0 Sec									
ADV-30	Backspin Timer	0 Sec									
ADV-31	Aux Timer Type	On-Delay									
ADV-32	Aux Timer Time	10 Sec									
ADV-33	Aux Timer Input	FWD DI									
ADV-34	Min Run Timer	0 Sec									
ADV-35	Multi-VFD Set	Single VFD									
ADV-36	Standby Pumps	0	0	0	0	0	0	0	0	0	0
ADV-37	Multi-VFD ID	VFD-1									
ADV-38	VLag Start Freq	59.5 Hz	114 Hz	114 Hz							
ADV-39	VLag Start Delay	10 Sec									
ADV-40	VLag Stop Freq	35 Hz	70 Hz	50 Hz							
ADV-41	VLag Stop Delay	5 Sec									
ADV-42	VLead/Lag ID	Read Only									
ADV-43	VLag Spd Source	PID									
ADV-44	VLag Set Freq	55 Hz	110 Hz	110 Hz							
ADV-45	Alternation	Disable									
ADV-46	Alternate TMR	24 Hour									
ADV-47	Set VFD Ready	Ready									
ADV-48	Jockey Mode	Disable									
ADV-49	J-Start Press	0.5 inWC	0.5 inWC	0.5 inWC	$75^{\circ} \mathrm{F}$	54 PSI	54 PSI	54 inWC	54 PSI	54 PSI	0.5 inWC
ADV-50	J-Start Freq	50 Hz	100 Hz	100 Hz							
ADV-51	Main Stop Freq	40 Hz	80 Hz	80 Hz							
ADV-52	J-Start Delay	20 Sec									
ADV-53	Main Stop Delay	5 Sec									
ADV-55	AVR Select	Enable									
ADV-56	Prog-1 Setting	None									
ADV-57	Prog-1 On Time	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01
ADV-58	Prog-1 Off Time	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01
ADV-59	Prog-1 Week Day	None Selected									
ADV-60	Prog-2 Setting	None									
ADV-61	Prog-2 On Time	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01
ADV-62	Prog-2 Off Time	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01
ADV-63	Prog-2 Week Day	None Selected									
ADV-64	Prog-3 Setting	None									
ADV-65	Prog-3 On Time	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01
ADV-66	Prog-3 Off Time	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01
ADV-67	Prog-3 Week Day	None Selected	None Selected	None Selected	$\begin{gathered} \text { None } \\ \text { Selected } \end{gathered}$	None Selected					
ADV-68	Prog-4 Setting	None									
ADV-69	Prog-4 On Time	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01
ADV-70	Prog-4 Off Time	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01	00:01
ADV-71	Prog-4 Week Day	None Selected									
ADV-74	Set-Point-A	0.5 inWC	0.5 inWC	0.5 inWC	$76{ }^{\circ} \mathrm{F}$	60 PSI	60 PSI	60 inWC	60 PSI	60 PSI	0.5 inWC
ADV-75	Set-Point-B	0.5 inWC	0.5 inWC	0.5 inWC	$76^{\circ} \mathrm{F}$	60 PSI	60 PSI	60 inWC	60 PSI	60 PSI	0.5 inWC
ADV-76	Set-Point-AB	0.5 inWC	0.5 inWC	0.5 inWC	$76^{\circ} \mathrm{F}$	60 PSI	60 PSI	60 inWC	60 PSI	60 PSI	0.5 inWC

Default Settings Table - PROT Menu

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
PROT-00	Decel Method	Normal									
PROT-01	Preheat Level	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
PROT-02	Preheat Duty	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
PROT-03	LV Level	By VFD Rating									
PROT-04	OV Stall Level	By VFD Rating	By VFD Rating	By VFD Rating	By VFD Rating	By VFD Rating	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	By VFD Rating
PROT-05	OV Stall Prevent	Standard									
PROT-06	SW Brake V Lvl	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \end{aligned}$	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \end{aligned}$	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \end{aligned}$	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \end{aligned}$	By VFD Rating
PROT-07	OCA Level	105\%	105\%	105\%	105\%	105\%	105\%	120\%	150\%	105\%	105\%
PROT-08	OCN Level	105\%	105\%	105\%	105\%	105\%	105\%	120\%	150\%	105\%	105\%
PROT-09	Auto Timer Counter	10800	10800	10800	10800	10800	10800	10800	10800	10800	10800
PROT-10	Auto Restarts	3	3	3	3	3	3	3	3	3	3
PROT-11	Auto Retry Delay	120 Sec									
PROT-12	OL-2 Type	Disable									
PROT-13	OL-2 Level	120\%	120\%	120\%	120\%	120\%	120\%	120\%	120\%	120\%	120\%
PROT-14	OL-2 Delay	0.1 Sec									
PROT-15	$\begin{aligned} & \text { OCA/OCN ACC/ } \\ & \text { DEC } \end{aligned}$	ACC/DEC-1									
PROT-16	ETH Type	Self-Cooled									
PROT-17	ETH Delay	60 Sec									
PROT-18	OH Warning	$105^{\circ} \mathrm{C}$	$105{ }^{\circ} \mathrm{C}$								
PROT-19	$\begin{aligned} & \text { PTC/PTC100 } \\ & \text { Select } \end{aligned}$	Disabled									
PROT-20	PTC Level	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
PROT-21	OPO Trip	Trip Coast Stop	$\begin{aligned} & \text { Trip Coast } \\ & \text { Stop } \end{aligned}$	Trip Coast Stop	$\begin{aligned} & \text { Trip Coast } \\ & \text { Stop } \end{aligned}$	Trip Coast Stop	$\begin{aligned} & \text { Trip Coast } \\ & \text { Stop } \end{aligned}$	Trip Coast Stop	$\begin{aligned} & \text { Trip Coast } \\ & \text { Stop } \end{aligned}$	Trip Coast Stop	$\begin{aligned} & \text { Trip Coast } \\ & \text { Stop } \end{aligned}$
PROT-22	OPO Delay	0.5 Sec									
PROT-23	OPO Current	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%
PROT-24	OPO Decel	0 Sec									
PROT-25	LvX Auto Reset	Enable									
PROT-26	IPO Check Time	0.2 Sec									
PROT-27	IPO Ripple	By VFD Rating	By VFD Rating	By VFD Rating	By VFD Rating	By VFD Rating					
PROT-28	IPO Trip	Alarm and Decel									
PROT-29	Derating Type	Carrier by I_T	$\begin{gathered} \text { Carrier by } \\ \text { I_T } \end{gathered}$	$\begin{gathered} \text { Carrier by } \\ \text { I_T } \end{gathered}$	$\begin{gathered} \text { Carrier by } \\ \text { I_T } \end{gathered}$	Carrier by I_T	Carrier by I_T	Carrier by I_T	Carrier by I_T	$\begin{gathered} \text { Carrier by } \\ \text { I_T } \end{gathered}$	$\begin{gathered} \text { Carrier by } \\ \text { I_T } \end{gathered}$
PROT-30	PT100 Level 1	$60^{\circ} \mathrm{C}$									
PROT-31	PT100 Level2	$100^{\circ} \mathrm{C}$									
PROT-32	PT100 L-1 Freq	0.5 Hz									
PROT-33	PT100 L-1 Delay	60 Sec									
PROT-34	Gnd Fault Level	60\%	60\%	60\%	60\%	60\%	60\%	60\%	60\%	60\%	60\%
PROT-35	Gnd Fault Delay	0.1 Sec									
PROT-36	STO Alarm Type	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	STO Latching	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	STO Latching	STO Latching	$\begin{aligned} & \text { STO } \\ & \text { Latching } \end{aligned}$	$\begin{aligned} & \text { STO } \\ & \text { Latching } \end{aligned}$	$\begin{aligned} & \text { STO } \\ & \text { Latching } \end{aligned}$	$\begin{aligned} & \text { STO } \\ & \text { Latching } \end{aligned}$
PROT-37	IPF S-Search	Disable									
PROT-38	Max IPF Time	2 Sec									
PROT-39	SS Current Lmt	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
PROT-40	SS After Fault	Disable									
PROT-42	SS Normal Start	Disable									
PROT-43	Spd Search Gain	40\%	40\%	40\%	40\%	40\%	40\%	40\%	40\%	40\%	40\%

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	$\begin{gathered} \text { FE } \\ \text { MagForce } \end{gathered}$	PM Motor
PROT-44	IPF Restart Dly	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating
PROT-45	Fan Control	At powerup	At powerup	$\begin{aligned} & \text { At power- } \\ & \text { up } \end{aligned}$	At power- up up	At powerup	At power-up	At powerup	At powerup	At powerup	At powerup
PROT-46	Last Flt Freq	Read Only									
PROT-47	Last Flt IGBTT	Read Only									
PROT-48	Last Flt Cap T	Read Only									
PROT-49	Last Flt MFI	Read Only									
PROT-50	Last Flt MFO	Read Only									
PROT-51	Fault-1 Record	Read Only									
PROT-52	Fault-2 Record	Read Only									
PROT-53	Fault-3 Record	Read Only									
PROT-54	Fault-4 Record	Read Only									
PROT-55	Fault-5 Record	Read Only									
PROT-56	Fault-6 Record	Read Only									
PROT-57	ULD Torque Min	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%
PROT-58	HLD Torque Min	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%

Default Settings Table - COMM Menu

| CODE | Display | Basic | Supply Fan | Exhaust
 Fan | Cooling
 Tower | Centrifugal
 Pump | Submersible
 Pump | Vacuum
 Pump | Constant
 Torque | FE
 MagForce | PM Motor |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	$\begin{gathered} \text { FE } \\ \text { MagForce } \end{gathered}$	PM Motor
Comm-32	Product code	Read Only									
Comm-33	Error code	Read Only									
Comm-34	D-Net Card Addr	1	1	1	1	1	1	1	1	1	1
Comm-35	D-Net Speed	500 Kbps									
Comm-36	D-Net Type	Standard									
Comm-37	M-bus IP Type	Static IP									
Comm-38	IP Address 1	0	0	0	0	0	0	0	0	0	0
Comm-39	IP Address 2	0	0	0	0	0	0	0	0	0	0
Comm-40	IP Address 3	0	0	0	0	0	0	0	0	0	0
Comm-41	IP Address 4	0	0	0	0	0	0	0	0	0	0
Comm-42	Address Mask 1	0	0	0	0	0	0	0	0	0	0
Comm-43	Address Mask 2	0	0	0	0	0	0	0	0	0	0
Comm-44	Address Mask 3	0	0	0	0	0	0	0	0	0	0
Comm-45	Address Mask 4	0	0	0	0	0	0	0	0	0	0
Comm-46	G-way Address 1	0	0	0	0	0	0	0	0	0	0
Comm-47	${ }_{2}^{\text {G-way Address }}$ 2	0	0	0	0	0	0	0	0	0	0
Comm-48	$\begin{aligned} & \text { G-way Address } \\ & 3 \end{aligned}$	0	0	0	0	0	0	0	0	0	0
Comm-49	G-way Address 4	0	0	0	0	0	0	0	0	0	0
Comm-50	MBus TCP Pass L	0	0	0	0	0	0	0	0	0	0
Comm-51	MBus TCP Pass H	0	0	0	0	0	0	0	0	0	0
Comm-52	MBus Card Reset	Disable									
Comm-53	MBus TCP Config	None									
Comm-54	MBus TCP Status	0	0	0	0	0	0	0	0	0	0
Comm-55	Set Comm Card	0	0	0	0	0	0	0	0	0	0

Default Settings Table - PLC Menu

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor	
PLC-00	Dl used by PLC	Read Only										
PLC-01	DO used by PLC	Read Only										
PLC-02	Analog by PLC	Read Only										
PLC-03	PLC Buffer 0	0	0	0	0	0	0	0	0	0	0	
PLC-04	PLC Buffer 1	0	0	0	0	0	0	0	0	0	0	
PLC-05	PLC Buffer 2	0	0	0	0	0	0	0	0	0	0	
PLC-06	PLC Buffer 3	0	0	0	0	0	0	0	0	0	0	
PLC-07	PLC Buffer 4	0	0	0	0	0	0	0	0	0	0	
PLC-08	PLC Buffer 5	0	0	0	0	0	0	0	0	0	0	
PLC-09	PLC Buffer 6	0	0	0	0	0	0	0	0	0	0	
PLC-10	PLC Buffer 7	0	0	0	0	0	0	0	0	0	0	
PLC-11	PLC Buffer 8	0	0	0	0	0	0	0	0	0	0	
PLC-12	PLC Buffer 9	0	0	0	0	0	0	0	0	0	0	
PLC-13	PLC Buffer 10	0	0	0	0	0	0	0	0	0	0	
PLC-14	PLC Buffer 11	0	0	0	0	0	0	0	0	0	0	
PLC-15	PLC Buffer 12	0	0	0	0	0	0	0	0	0	0	
PLC-16	PLC Buffer 13	0	0	0	0	0	0	0	0	0	0	
PLC-17	PLC Buffer 14	0	0	0	0	0	0	0	0	0	0	
PLC-18	PLC Buffer 15	0	0	0	0	0	0	0	0	0	0	
PLC-19	PLC Buffer 16	0	0	0	0	0	0	0	0	0	0	
PLC-20	PLC Buffer 17	0	0	0	0	0	0	0	0	0	0	
PLC-21	PLC Buffer 18	0	0	0	0	0	0	0	0	0	0	0
PLC-22	PLC Buffer 19	0	0	0	0	0	0	0	0	0	0	

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
PLC-23	PLC Com Type	Modbus 485									
PLC-24	PLC force to 0	0	0	0	0	0	0	0	0	0	0
PLC-25	PLC Address	2	2	2	2	2	2	2	2	2	2

Default Settings Table - Option Menu

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
Option-00	M10 Define	None									
Option-01	M11 Define	None									
Option-02	M12 Define	None									
Option-03	M13 Define	None									
Option-04	M14 Define	None									
Option-05	M15 Define	None									
Option-06	Relay exp. RA10	None									
Option-07	Relay exp. RA11	None									
Option-08	Relay exp. RA12	None									
Option-09	Relay exp. RA13	None									
Option-10	Relay exp. RA14	None									
Option-11	Relay exp. RA15	None									
Option-12	Relay exp. RA16	None									
Option-13	Relay exp. RA17	None									
Option-14	Relay exp. RA18	None									
Option-15	Relay exp. RA19	None									
Option-16	Relay exp. RA20	None									
Option-17	IO Card Type	No Card									

Default Settings Table - ADV2 Menu

Parameters in highlighted rows are reset when the application is changed [SET-00].

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
ADV2-00	PID D-Gain	0 Sec									
ADV2-01	Sleep Ctrl By	PID Output									
ADV2-03	Mtr Brake Delay	0 Sec									
ADV2-04	AFM1 Rev Value	0-10 V									
ADV2-05	AFM2 Rev Value	0-10 V									
ADV2-06	AFM1 DC Lvl	35\%	35\%	35\%	35\%	35\%	35\%	35\%	35\%	35\%	35\%
ADV2-07	AFM2 DCLvI	35\%	35\%	35\%	35\%	35\%	35\%	35\%	35\%	35\%	35\%
ADV2-08	Analog Curve	3x Als 3Point	3xAls 3Point	3x Als 3Point	3x Als 3Point						
ADV2-09	AVII Low Value	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V
ADV2-10	AVII Low \%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
ADV2-11	AVII Mid Value	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V
ADV2-12	AVII Mid \%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
ADV2-13	AVI1 High Value	10 V									
ADV2-14	AVII High \%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV2-15	ACI Low Value	4 mA									
ADV2-16	ACI Low \%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
ADV2-17	ACI Mid Value	12 mA									
ADV2-18	ACI Mid \%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
ADV2-19	ACI High Value	20 mA									
ADV2-20	ACI High \%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
ADV2-21	AVI2 Low Value	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V
ADV2-22	AVI2 Low \%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
ADV2-23	AVI2 Mid Value	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V
ADV2-24	AVI2 Mid \%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
ADV2-25	AVI2 High Value	10 V									
ADV2-26	AVI2 High \%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV2-27	dEb Offset V	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$
ADV2-28	dEb Mode Select	Disable									
ADV2-30	PID Mode Select	Serial									
ADV2-31	PID Unit Format	0.01	0.01	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ADV2-32	PID Ref Source	Keypad									
ADV2-36	PID2 Output	None									
ADV2-37	PID2 Type	Inverse									
ADV2-38	PID2 Set Point	0.5 inWC	0.5 inWC	0.5 inWC	$76{ }^{\circ} \mathrm{F}$	35 PSI	35 PSI	40 inWC	35 PSI	35 PSI	0.5 inWC
ADV2-39	PID2 P-Gain	30\%	30\%	30\%	30\%	30\%	30\%	30\%	30\%	30\%	30\%
ADV2-40	PID2 I-Time	1 Sec									
ADV2-41	PID2 Low Limit	20 Hz	30 Hz	20 Hz	20 Hz	60 Hz	60 Hz				
ADV2-42	PID2 High Limit	45 Hz	90 Hz	90 Hz							
ADV2-43	PID2 Stp Delay	120 Min									
ADV2-44	PID2 Exit LvI	0.5 inWC	0.5 inWC	0.5 inWC	$75^{\circ} \mathrm{F}$	40 PSI	40 PSI	50 inWC	40 PSI	40 PSI	0.5 inWC
ADV2-45	Dual Demand	Disabled									
ADV2-46	Pipe Leak Sel	Disabled									
ADV2-47	Last Wake Time	Read Only									
ADV2-48	H-H Wake Time	4 Sec									
ADV2-49	H-L Wake Time	10 Sec									
ADV2-50	L-L Wake Time	14 Sec									
ADV2-51	L-H Wake Time	6 Sec									
ADV2-52	LD Set Point	0.5 inWC	0.5 inWC	0.5 inWC	$70^{\circ} \mathrm{F}$	70 PSI	70 PSI	70 inWC	70 PSI	70 PSI	0.5 inWC
ADV2-53	LD Max Freq	48 Hz	96 Hz	96 Hz							
ADV2-54	LD Timer	10 Sec									
ADV2-55	Clean Pump Sel	Disable									
ADV2-56	Clean Pump Tmr	180 Min									
ADV2-58	Aux AI Select	AVII									
ADV2-59	Aux AI Unit	Feet	inWC	inWC	${ }^{\circ} \mathrm{F}$	PSI	Feet	PSI	PSI	Feet	Feet
ADV2-60	Aux Unit Format	0.1	0.01	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ADV2-61	Aux Max Value	10 Feet	1 inWC	1 inWC	$150{ }^{\circ} \mathrm{F}$	100 PSI	100 Feet	100 PSI	100 PSI	100 Feet	10 Feet
ADV2-62	Analog Trigger	Disable									
ADV2-63	Trigger Source	Aux AI	Aux Al	Aux AI	Aux AI	Aux AI	Aux AI				
ADV2-64	Trigger Type	Lower									
ADV2-65	Trigger Level	0.5 Feet	0.5 inWC	0.5 inWC	$70^{\circ} \mathrm{F}$	30 PSI	5 Feet	30 PSI	30 PSI	5 Feet	5 Feet
ADV2-66	Trigger Hyster	0.1 Feet	0.1 in WC	0.1 inWC	$5^{\circ} \mathrm{F}$	5 PSI	1 Feet	5 PSI	5 PSI	1 Feet	1 Feet
ADV2-68	P-Fill Low Freq	44 Hz	90 Hz	90 Hz							

Default Settings Table - Motor Menu

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	$\begin{array}{\|c\|} \hline \text { Centrifugal } \\ \text { Pump } \end{array}$	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
Motor-00	Motor A Tuning	None									
Motor-01	Motor Rs Value	0 Ohm									
Motor-02	Motor Rr Value	0 Ohm	0 Ohm	00 hm	00 hm	0 Ohm	0 Ohm	00 hm	0 Ohm	0 Ohm	0 Ohm
Motor-03	Motor Lm Value	0 mH									
Motor-04	Motor Lx Value	0 mH									
Motor-05	Control Method	V/F	Sensorless	Sensorless							
Motor-06	Motor Type	Induction	PM-IPM	PM-SPM							
Motor-07	Motor Poles	4	4	4	4	4	2	4	4	4	4
Motor-08	PM Inertia	$\begin{gathered} \hline \text { By VFD } \\ \text { Rating } \\ \hline \end{gathered}$	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating					
Motor-09	PM Rs	0 Ohm	00 hm	0 Ohm	0 Ohm	0 Ohm	0 Ohm				
Motor-10	PM Ld	0 mH									
Motor-11	PM Lq	0 mH									
Motor-12	PM PG Angle	0 degree									
Motor-13	PM Ke Coeff	OV	0 V	0 V	OV						
Motor-14	Rotor Zeroing	Disabled	1/4 FLA Current	1/4 FLA Current							
Motor-15	Torque Filter T	0.5 Sec									
Motor-16	Slip Filter T	0.1 Sec									
Motor-17	Torque Cmp	0	0	0	0	0	0	0	0	0	20
Motor-18	Slip Cmp Gain	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating						
Motor-19	Slip Dev Level	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Motor-20	Slip Dev Det T	1 Sec									
Motor-21	Over Slip Trip	Alarm and Run									
Motor-22	Motor Hunt Gain	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Motor-24	I/F Current	40\%	40\%	40\%	40\%	40\%	40\%	40\%	40\%	40\%	80\%
Motor-25	PM Bandwidth HS	5 Hz	6 Hz								
Motor-26	PMSVC Fltr Gain	1	1	1	1	1	1	1	1	2	2
Motor-27	Frea I/F to PM	20 Hz	30 Hz	30 Hz							
Motor-28	Freq PM to I/F	20 Hz	30 Hz	30 Hz							
Motor-29	I/F fitr time	0.2 Sec									
Motor-30	Angle Det Pulse	1	1	1	1	1	1	1	1	1	1
Motor-31	Zero voltage T	0 Sec									
Motor-32	Injection Frea	500 Hz									
Motor-33	Injection V	15 V									
Motor-34	Run Time Min	0 min									
Motor-35	Run Time Days	0 day									
Motor-36	Motor PF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.96	0.96
Motor-37	PM Trq Comp I/F	20	20	20	20	20	20	20	20	50	20
Motor-38	PM Trq Comp SVC	0	0	0	0	0	0	0	0	0	0
Motor-39	DC-Tun Curr P	300	300	300	300	300	300	300	300	300	300
Motor-40	DC-Tun Curr I	50	50	50	50	50	50	50	50	50	50

Default Settings Table - Frequency Defaults with 50 Hz

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	FE MagForce	PM Motor
SET-13	Low Freq Limit	20 Hz	30 Hz	20 Hz	20 Hz	60 Hz	40 Hz				
SET-14	High Freq Limit	50 Hz	100 Hz	100 Hz							
SET-22	PID Lo Hz Limit	20 Hz	30 Hz	20 Hz	20 Hz	60 Hz	40 Hz				
SET-23	PID Hi Hz Limit	50 Hz	100 Hz	100 Hz							
SET-35	Pipe Fill Freq	39.5 Hz	79 Hz	79 Hz							
SET-37	Broken Pipe Freq	49.5 Hz	94 Hz	94 Hz							
SET-43	ULD Frequency	30 Hz	49 Hz	30 Hz	20 Hz	60 Hz	40 Hz				
SET-49	HLD Frequency	20 Hz	30 Hz	20 Hz	20 Hz	60 Hz	40 Hz				
SET-53	ACC Change Frea	0 Hz	30 Hz	0 Hz	0 Hz	60 Hz	0 Hz				
VFD-00	VFD Max Freq	50 Hz	100 Hz	100 Hz							
VFD-02	Motor Base Freq	50 Hz	100 Hz	100 Hz							
10-19	Min Freq Limit	40 Hz	80 Hz	80 Hz							
10-30	FO Frequency	50 Hz	95 Hz	95 Hz							
10-40	No-Flow Frea	20 Hz	30 Hz	20 Hz	20 Hz	60 Hz	40 Hz				
10-52	FDT-2 Frequency	50 Hz	95 Hz	95 Hz							
10-54	FDT-3 Frequency	50 Hz	95 Hz	95 Hz							
10-57	FDT-4/5 Setting	3 Hz									
ADV-17	Mtr Switch Hz	50 Hz	95 Hz	95 Hz							
ADV-18	Lag Start Freq	49.5 Hz	94 Hz	94 Hz							
ADV-23	Lag Stop Freq	35 Hz	70 Hz	50 Hz							
ADV-38	VLag Start Freq	49.5 Hz	94 Hz	94 Hz							
ADV-40	VLag Stop Freq	35 Hz	40 Hz	35 Hz	35 Hz	80 Hz	70 Hz				
ADV-44	VLag Set Freq	45 Hz	90 Hz	90 Hz							
ADV-50	J-Start Freq	40 Hz	80 Hz	80 Hz							
ADV-51	Main Stop Freq	35 Hz	70 Hz	70 Hz							
ADV-74	S-Point-A	. 5 inWC	. 5 inWC	. 5 inWC	$76^{\circ} \mathrm{F}$	60 PSI	60 PSI	60 inWC	60 PSI	60 PSI	. 5 inWC
ADV-75	S-Point-B	. 5 inWC	. 5 inWC	. 5 inWC	$76^{\circ} \mathrm{F}$	60 PSI	60 PSI	60 inWC	60 PSI	60 PSI	. 5 inWC
ADV-76	S-Point-AB	. 5 inWC	. 5 inWC	. 5 inWC	$76^{\circ} \mathrm{F}$	60 PSI	60 PSI	60 inWC	60 PSI	60 PSI	. 5 inWC
ADV2-41	PID2 Low Limit	20 Hz	30 Hz	20 Hz	20 Hz	60 Hz	40 Hz				
ADV2-42	PID2 High Limit	45 Hz	90 Hz	90 Hz							
ADV2-53	LD Max Freq	48 Hz	96 Hz	96 Hz							
Motor-27	Freq I/F to PM	20 Hz	30 Hz	30 Hz							
Motor-28	Freq PM to I/F	20 Hz	30 Hz	30 Hz							

INSTALLATION TESTING

Rotation Check

Start VFD in forward direction and check the motor rotation. If the motor is running backwards, disconnect power to the VFD and reverse any two motor leads to change the motor rotation.

- For submersible pumps or other applications that cannot be checked visually, rotation can be determined by evaluating performance. For example, if the system is not building the expected pressure, or if the motor is running at less than 80% FLA or SFA at full speed, or if current does not go down as expected, it may be running backwards.
- Performance comparisons can also be made using the Load Rotation settings available in the drive. Refer to "Forward or Reverse Selection" on page 69.

IMPORTANT: Do not use the Load Rotation setting to correct a motor that is running backwards because of incorrect wiring.

Feedback Checks

Check the motor run current on the VFD display while running at full speed. If it is higher than motor FLA (or SFA), check motor wiring and for any mechanical problems (valves, dampers, etc.) that could create extra load on the motor shaft.

When running in PID mode, check to see that transducer feedback (i.e. pressure) matches any gauges that may be installed. If the target is not accurate, verify that the transducer scaling (Feedback Max) has been set correctly.

Performance Checks

If PID is disabled, run the system and vary speed from VFD Low Frequency Limit to VFD High Frequency Limit. Monitor output current, which should not exceed motor FLA or SFA. Check that equipment produces the proper output (air flow, water flow, etc.) at nominal speed.

If PID is enabled, run the system with constant demand. Then change demand and monitor how system pressure or temperature reaches the setpoint value. If the system responds very slowly, or very quickly with overshooting, PID parameters P-Gain and I-Time should be adjusted.

If multiple acceleration/deceleration curves have been programmed, verify that motor performs as expected.

Sleep Mode Check (Pump Applications)

Sleep Mode Check (Pump Applications)

All default settings related to Sleep mode have been calculated for best system performance for most applications. However, some well conditions may require a slight adjustment.

During system setup it is recommended to test the Sleep feature by closing a main valve to simulate a nodemand condition. The system should be running at normal demand, maintaining pressure setpoint, then flow should be decreased slowly until stopped.

- If the system does not enter Sleep mode, it may be necessary to increase the PID Lo Hz Limit [SET-22] to ensure that system pressure reaches PID Setpoint [SET-21] (plus boost, if enabled).
- If, during normal operation, the system enters Sleep mode, but cycles on and off rapidly as it nears the Setpoint, it may be necessary to slightly lower the PID Lo Hz Limit [SET-22] to prevent Sleep mode problems.

Refer to "Sleep Mode with Pressure Boost" on page 73.

OPERATION

Control Options

Hand/Auto Controls

The drive can be operated in either HAND or AUTO mode as follows:

- HAND mode runs the motor based on Hand Speed Ref [SET-09] (frequency source) and Hand Run Cmd [SET-10] (command source). The default for both settings are Keypad, which runs the motor at a fixed speed (Keypad Setpoint) set on the Home Screen. Both settings can be reprogrammed for external control. PID control is disabled in Hand mode.
- AUTO mode runs the motor based on AUTO Speed Ref [SET-07] (frequency source) and AUTO Run (md [SET-08] (command source). The speed reference default is set per application. The run command default is Keypad. Both settings can be reprogrammed as required.

There are several options to consider for operation of the VFD through external HOA controls:
HOA Mode Source [SET-60]: Selects whether Hand/Auto control will come from the Keypad, a Digital Input, or Communications. When switching modes with the keypad, the VFD will stop and then will start again when the Start key is pressed. When switching modes with a DI or Comm source, the VFD will start based on the presence of a run command.

- Keypad (Default): The VFD Keypad HOA buttons, including Start and Stop, are fully functional.
- Digital Input: Enables HOA control through an external switch wired to two digital
 inputs [MII to M18]. These inputs should be set to 26_Hand and 27_Auto through parameters [$10-21$ to 28]. HOA mode is then determined as follows:

26_HOA Hand	27_HOA Auto	HOA Mode
OFF	OFF	OFF
ON	OFF	Hand
OFF	ON	Auto
ON	ON	OFF

- RS485 Serial: Enables HOA control through Modbus communications.
- Com Card: Enables HOA control through BACNet communications. The combinations of 0×2002 bit 3 and bit 4 are defined as follows:

Bit 3	Bit 4	HOA Mode
0	0	No change
1	0	Hand
0	1	Auto
1	1	OFF

KPD STOP as OFF [SET-61]: When enabled, the Stop key acts as a keypad HOA OFF mode, stopping the VFD from being controlled by anything other than an External HOA. To return to Auto or Hand mode, press the corresponding key.

Hand Speed Ref [SET-09]: Source of Speed Reference in Hand mode. When in Hand mode, PID is disabled and the VFD frequency is based on the following inputs:

- Keypad (Default): VFD runs at a fixed frequency set on the Home Screen.
- RS485 Serial: Frequency input through Modbus control.
- AVII Analog: Inputs from external controller, potentiometer, or other device.
- ACI Analog: Inputs from external controller, potentiometer, or other device.

OPERATION
 Control Options

- AVI2 Analog: Inputs from external controller, potentiometer, or other device.
- COM Card: Frequency input through communications protocol.

Hand Run Command [SET-10]: Source of Run Command in Hand mode. VFD starts based on run command from:

- Keypad (Default): Run command from Start/Stop buttons.
- Digital Input: Run command from digital input FWD or REV terminal.
- RS485: Run command from RS485 interface. Keypad STOP is disabled.
- Com Card: Run command from communications card.
- Ext HOA in Hand: Run command from digital input [10-21-28] set to HAND.

Auto Speed Ref [SET-07]: Source of Speed Reference in Auto mode. VFD runs at a frequency based on input from:

- Keypad: VFD runs at a fixed frequency set on the Home Screen.
- Up/Down DI: Digital input increases or decreases speed when DI terminals [IO-21-28] set to Up and Down.
- AVII Analog: Input from external controller, potentiometer, or other device.
- ACI Analog: Input from external controller, potentiometer, or other device.
- AVI2 Analog: Input from external controller, potentiometer, or other device.
- RS485 Serial: Frequency input through Modbus control.
- COM Card: Frequency input through communications protocol.
- PID Output: VFD speed reference will be provided by PID control based on the difference between PID Setpoint [SET-21] and transducer feedback values.
IMPORTANT: When PID Mode is selected, additional parameter settings should be verified to ensure correct operation. Refer to "Standard Operation with PID Feedback Control" on page 71 for more information.

Auto Run Command [SET-08]: Source of Run Command in Auto mode. VFD starts based on input from:

- Keypad (Default): Run command from Start/Stop buttons.
- Digital Input: Run command from digital input FWD or REV terminal.
- RS485: Run command from RS485 interface. Keypad STOP is disabled.
- Com Card: Run command from communications card.
- Ext HOA in Auto: Run command from digital input [10-21-28] set to AUTO.

Forward or Reverse Selection

This feature provides the ability to change the rotation direction of a motor. There are dedicated inputs for forward and reverse. Only one input can be set to FWD and one input to REV (no overlapping). By default, FWD input is set to FWD and REV input to REV.

2/3-Wire Select [SET-63]: Selects the way rotation is changed.

- 0_2-Wire Fwd/Rev: Activating FWD input will start VFD in forward. Activating REV input will start VFD in reverse. The VFD will ignore commands if both inputs are activated.
- 1_2-Wire Fwd+Rev: The FWD input works as a Run command and REV input is used to change rotation. The VFD starts forward when FWD input is activated and will change the rotation by REV input. When the control is set to keypad, the VFD will start with the Start button and rotation will be changed by the FWD/REV button.
- 2_3-Wire $\mathrm{F}+\mathrm{R}+\mathrm{Stop}$: This selection provides 3-wire control feature for two-pushbutton stations with N.O. Start button and N.C. Stop button. FWD input will be forward momentarily Start input, REV will be reverse Start input, and MII input by default will become a 3-Wire Stop input.
NOTE: If any DI is set to 38_FWD, FWD, REV and MI1 inputs will be disabled as 3-Wire Start/Stop inputs and another input should be set to 11_3-Wire Stop.

NOTE: If MI10 input of IO expansion card is set to FWD, MI11 will become REV input and MII2 is 3-Wire Stop input.

Load Rotation [SET-15]: This parameter controls whether a load can rotate in both directions or only one.

Jog Feature

The Jog feature provides the ability to activate a motor momentarily. The command can be executed using either the keypad F1 button, or digital input set to Jog function.

- When using the keypad, the motor direction depends on the Load Rotation [SET-15] setting. Digital inputs can be set to either forward or reverse.
- The jog command cannot be used when the drive is running.
- When the jog command is active, other run commands are unavailable.

Jog Frequency [VFD-55]: Sets the speed the motor will run when the jog command is active.
Jog ACC Time [VFD-53]: Sets the acceleration time from 0 Hz to [VFD-55].
Jog DEC Time [VFD-54]: Sets the deceleration time from [VFD-55] to 0 Hz .
FWD Jog [I0-21 through 28]: To execute a forward jog command externally, connect a momentary switch to one of the Digital Inputs (MI1-MI8) and set the corresponding parameter to 21 FWD Jog.
REV Jog [I0-21 through 28]: To execute a reverse jog command externally, connect a momentary switch to one of the Digital Inputs (MI1-MI8) and set the corresponding parameter to 22 REV Jog.

NOTE: If an external HOA switch is set to OFF, the keypad FI button is disabled.

Step Frequencies

The VFD can be operated in a selection of up to 15 user defined pre-set frequencies (speeds) through a combination of switched digital inputs [10-21-28]. These speeds are defined through parameters [VFD-04 to 18].

When a run command is present, selection of a step frequency overrides any previously active speed reference.

The switching combinations for step frequency selection are as follows:

Input Selection					Parameter
Step Speed					
	Speed M	Speed H	Speed X	[VFD-04]	Speed 1
1	0	0	0	[VFD	SpD-05]
0	1	0	0	Speed 2	
1	1	0	0	[VFD-06]	Speed 3
0	0	1	0	[VFD-07]	Speed 4
1	0	1	0	[VFD-08]	Speed 5
0	1	1	0	[VFD-09]	Speed 6
1	1	1	0	[VFD-10]	Speed 7
0	0	0	1	[VFD-11]	Speed 8
1	0	0	1	[VFD-12]	Speed 9
0	1	0	1	[VFD-13]	Speed 10
1	1	0	1	[VFD-14]	Speed 11
0	0	1	1	[VFD-15]	Speed 12
1	0	1	1	[VFD-16]	Speed 13
0	1	1	1	[VFD-17]	Speed 14
1	1	1	1	[VFD-18]	Speed 15

Shutdown

The Shutdown feature uses a Digital Input signal [MII-M18] from an external source to stop VFD output in the event of an emergency. The VFD will trip on Shutdown when the DI signal is activated. This function overrides all other functions and VFD cannot be started with any HOA change until stop signal is removed.

Two options are available for restarting:
Latching Mode [10-21 through 28]: The Shutdown signal must be removed and the Shutdown fault must be manually reset; no auto restarts or retries are available. The VFD can then be restarted with a RUN command. To enable this function, connect the external emergency stop signal to one of the Digital Inputs (MIIMI8) and set the corresponding parameter to 36_Shutdown Latched.
Non-Latching Mode [IO-21 through 28]: If a RUN command is present when the Shutdown signal is removed, the VFD will restart based on HOA mode. To enable this function, connect the external emergency stop signal to one of the Digital Inputs (MII-M18) and set the corresponding parameter to 35_Shutdown N -Latch.
Only one Digital Input can be set to Shutdown.

Standard Operation with an Automated Control System

In many VFD applications, including ventilation, water supply, or irrigation, motor speed is often determined by an automated system such as a BAS, BMS, or PLC. These systems provide control information to the VFD either through a communications protocol such as Modbus or BACnet, or through direct electrical connection to one of the analog input terminals.

When the drive is in AUTO mode, it runs the motor at a variable frequency based on information from the automation system through the input selected in Auto Speed Ref [SET-07].

Standard Operation with PID Feedback Control

A PID controlled application, such as a fan system or a constant pressure pump system, uses feedback from a transducer to measure system performance against a user defined Setpoint (target) to control motor speed. The VFD can use several types of measurement, including pressure, flow, level, air volume, temperature, speed, etc.

For example:

- In a pumping application, the default measurement unit is PSI. As user demand (flow) causes pressure changes, the drive varies the output frequency (motor speed) to maintain pressure at the target setpoint. When the drive determines a no-demand condition, it enters Sleep mode and stops the motor.
- In a fan application, the default measurement unit is inWC (air pressure).

When the drive is in AUTO mode, it runs the motor at a variable frequency based on a comparison between the PID Setpoint [SET-21] and feedback from the PID transducer, up to the PID Hi Hz Limit [SET-23]. PID operation is disabled in HAND mode.

When basic setup is complete, including motor specifications, verify or set the following parameters for PID operation:

Auto Speed Ref [SET-07]: Set to PID Output.

Auto Run Command [SET-08]: Select source of Run Command, either Keypad or external. If using a Digital Input (M1-8) with a switch, set the terminal to FWD (or REV) [IO-21~28].
PID Mode [SET-17]: Set to PID Direct for most PID operations.
Feedback Source [SET-18]: Set to the terminal used for transducer connection. Make sure impedance is set correctly.
PID Feedback Units [SET-19]: Set to the appropriate measurement unit for the transducer type.
PID Feedback Max [SET-20]: Set to the maximum rating of the transducer.
PID Setpoint [SET-21]: Set to the desired measurement target.
PID P-Gain [SET-24]: Proportional Gain controls motor speed adjustments based on the proportional difference between the PID setpoint and PID feedback. Higher settings result in a faster response. However, if the value is too high, it may cause system oscillation and instability. Used along with PID I-TIme [SET-25] to smooth and balance system response.
PID I Time [SET-25]: Integral Time determines PID response time. Lower values increase system response to the feedback signal, which reduces overshoot, but may cause system oscillation if set too low. Greater values provide slower response, which may cause overshoot of the setpoint and oscillation of output frequency.
Sleep Mode [SET-26]: This should be enabled for most pump applications, and Disabled for most HVAC applications.

Damper Control (HVAC Applications)

The VFD can provide a relay output to open a damper before starting a fan motor. When Damper Control is enabled, the damper relay output is activated when the system receives a RUN command and the motor will start based on the following configurations:

- With Damper Limit Switch: If any Digital Input [10-21 through 28] is set to Damper Limit Sw and the VFD receives a RUN command, the damper relay is activated and when the damper limit switch is closed (damper is fully open and DI is activated), the VFD will start the motor.
If the limit switch is not closed within the Damper Time Delay [IO-37], the VFD will trip on Damper Fault. If at any point during run mode damper limit switch is open for more than 2 seconds, the VFD will trip on Damper Fault. VFD will try to restart based on the retry number setting [PROT-10].
- Without Damper Limit Switch: If no Digital Input is configured for a damper limit switch and the VFD receives a RUN command, the damper relay is activated, and when Damper Time Delay [I0-37] is complete the VFD will start the motor. There is no damper fault detection because there is no damper limit switch feedback.

NOTE: If any other run delay timer is set and the VFD receives a RUN command, the damper relay will start after the first run delay timer expires.

During run mode, the damper relay stays activated. When a STOP command is received, the damper relay will be deactivated only in VFD stop state. If stop mode is set to deceleration, the relay will be deactivated after VFD reaches zero speed $(0.00 \mathrm{~Hz})$.

Set the following parameters to use the Damper Control function:
Damper Mode [I0-36]: Enables or disables damper mode. When enabled, the damper relay is activated before every start, including auto restarts.
Damper T-Delay [10-37]: Provides a run time delay without a damper limit switch; or, provides a Damper Fault delay for systems that include a damper limit switch. The delay should be greater than damper opening time.
Damper Output Terminal [I0-47 through 49]: Connect the damper actuator to one of the Relay Outputs (RA1-3), and set the corresponding parameter to 38_Damper Output.
Damper Limit SW Terminal [10-21 through 28]: If the system includes a damper limit switch, connect the switch to one of the Digital Inputs (MI1-8) and set the corresponding parameter to 34_Damper Limit SW.
Auto Restarts [PROT-10]: The number of times the VFD will try to restart after a fault. Auto Retry Delay [PROT-11]: The time delay before the VFD attempts to restart after a fault.

Fireman's Override

Fireman's Override (FO) provides the ability to force the drive to run exhaust fan to purge smoke from fire in the building by activating FO digital input. This mode is available for Basic and Exhaust fan applications.

In FO mode, if Damper Mode is enabled [[10-36], the damper relay output will be activated, but damper time delay [10-37] will reduce by half before VFD starts. The VFD will not monitor a Damper Switch, if present, and no damper faults will be available. Set the following parameters to use the FO function:

FO Input Terminal [IO-21 through 28]: Connect the FO switch to one of the Digital Inputs (MII-8) and set the corresponding parameter to either 32 FO with RUN Cmd or $33 _$F0 w/o RUN Cmd.
FO Enable [10-29]: Enables FO in either Forward or Reverse.
FO Frequency [IO-30]: Setpoint for non-PID operation during FO.
FO Fault Retry [10-31]: Number of fault resets allowed during FO.
FO Retry Delay [10-32]: Delay until restart during FO.

FO Mode \& Reset [I0-33]: Sets control method and reset method during FO (PID Off Manual, PID Off Auto, PID On Manual, or PID On Auto).

NOTE: FO Mode overrides all non-critical faults. When FO is activated, the Auto Retry Delay (PROT-11) is ignored and the current fault, PROT-11 Delay timer, and Auto Restart counter will be reset.
FO PID S-Point [IO-34]: Setpoint for PID operation during FO.
FO Bypass [10-72]: Enables Bypass for FO.
FO Bypass Delay [10-73]: Time delay between FO becoming active and enabling relay output.

Pump Application Features

Sleep Mode with Pressure Boost

The Sleep feature monitors pressure and frequency to detect a no-demand condition, at which point it stops the motor. The Sleep Feature also has the option to boost system pressure by a set amount before stopping.
The Sleep feature works only in Auto mode using PID. PID2 operation does not have Sleep function.
Set following parameters to control Sleep functions:
Sleep Mode [SET-26]: This setting enables or disables sleep mode and the sleep plus boost option. The default value for submersibles and surface/boost applications is Sleep Only. If a pressure boost is desired while the system is at rest, select Sleep + Boost and set a Sleep Boost Value [SET-29].
Sleep Check Time [SET-27]: Time delay (sleep check cycle time) before each Sleep Check procedure. Default $=10 \mathrm{sec}$.
Sleep Delay [SET-28]: Delay before VFD triggers Sleep Mode when all other conditions are met. Default is 6 sec .
Sleep Boost Value [SET-29]: Value added to original setpoint to provide pressure boost-0.0 to 10.0% of Feedback Max Value [SET-20]. Default is 3\%.
Sleep-Boost Timer [SET-30]: Timer that limits sleep boost duration if Sleep Boost setpoint is not reached (5 to 120 sec). Default is 10 sec .
Wakeup Level [SET-31]: Sets a wakeup level for VFD to quit Sleep mode and start running-0.0 to [SET-21]. Default is 55 PSI .
Sleep Bump Timer [SET-32]: Sets a duration time for pressure bump to increase system pressure as part of the no-demand calculation. Default is 5 sec.
No Flow Mode [IO-38]: If a flow switch is installed on one of the Digital Inputs (M11-8) and [IO-38] is set to Sleep, the flow switch becomes an additional condition for sleep mode. If Sleep Delay timer has started and the flow switch opens at any time before the timer expires, the VFD will immediately go to either sleep mode (no Sleep Boost) or to Sleep Boost mode (with S-boost enabled).
All default settings related to Sleep mode have been calculated for best system performance for most applications. However, some well conditions may require a slight adjustment.
During system setup it is recommended to test the Sleep feature by closing a main valve to simulate a nodemand condition. The system should be running at normal demand, maintaining pressure setpoint, then flow should be decreased slowly until stopped.

- If the system does not enter Sleep mode, it may be necessary to increase the PID Lo Hz Limit [SET-22] to ensure that system pressure reaches PID Setpoint [SET-21] (plus boost, if enabled).
- If, during normal operation, the system enters Sleep mode but cycles on and off rapidly as it nears the Setpoint, it may be necessary to slightly lower the PID Lo Hz Limit [SET-22] to prevent Sleep mode problems.

OPERATION
 Control Options

Pipe Fill Feature

This feature automates the process of building pressure in an empty pipe system at a reduced speed before the VFD switches to PID control. This can reduce water hammer in some systems, and can also help prevent an Underload fault if the drive runs for an extended period at low pressure. The VFD must be running with PID Control in Auto mode for this feature to be active.

Set the following parameters to activate the Pipe Fill Feature:
Pipe Fill Timer [SET-33]: Pipe Fill mode exit timer to switch to PID control.

- Enter a time between 0.1 and 60 minutes to allow the pipe system to fill.
- If set to 0.0, Pipe Fill is disabled.
- When the timer expires, the VFD cancels Pipe Fill mode and switches to PID control, regardless of whether [SET-34] pressure has been reached.

Pipe Fill Exit Level [SET-34]: Pipe Fill mode exit pressure to switch to PID control.

- Enter a pressure setting between 0 and the PID Setpoint [SET-21] (default = 25 psi).
- During Pipe Fill mode, if pressure reaches the set value, VFD switches to PID control.

Pipe Fill Freq [SET-35]: Pipe Fill mode High frequency limit setting.

- Range is between PID Low Freq Limit [SET-22] and PID Hi Hz Limit [SET-23] (default = 47 Hz).
- The Pipe Fill mode frequency should be equal to or greater than [SET-22] +2 Hz to provide enough system pressure at the end of pipe fill mode to switch to PID control.

Upon start, if system pressure is less than [SET-34], VFD will ramp up to Low Freq Limit + 2 and start pipe fill mode.

- If system pressure is less than $0.5 \times$ [SET-34], the frequency reference will increase at a rate of 0.5 Hz per second.
- If system pressure is equal to or greater than $0.5 \times$ [SET-34] but less than $0.6 \times$ [SET-34], the frequency reference will stay at the current value.
- If system pressure is equal to or greater than $0.6 \times$ [SET-34] but less than [SET-34] setting, the frequency reference will be decreased at a 0.5 Hz per second rate. However, the rate will not be decreased below PID Low Hz Limit [SET-22] +2 Hz
- If at any point system pressure is equal to or greater than [SET-34], VFD will cancel Pipe Fill mode and switch to PID control.

Tank Fill, Drain, and Level Control (Analog Trigger)

This feature provides Start/Stop control or Relay output based on tank water levels. It requires a pressure transducer or tank level transducer installed in the water tank.

The VFD can use several types of measurement for motor control, including flow, level, temperature, etc. For this application, the transducer output is scaled to measure water level in feet. Trigger by analog level feature uses either PID F/B signal or Aux AI signal set in [ADV2-58] through [ADV2-61].

NOTE: FO mode and Shutdown take priority over Analog Trigger.
Set the following parameters to activate this feature:

Analog Trigger [ADV2-62]:

- Disable: the feature is disabled.
- Relay: (I/0-47, I/0-48, or I/0-49 should be set to 17 _Analog Trigger) VFD will activate selected relay in any VFD state (stop, run, fault, etc.) at the AI Trigger Level [ADV2-65]. It will deactivate it by hysteresis value depending on the Trigger Type [ADV2-64].
- Run Enable: Enables VFD run command when HOA is in Hand or Auto mode based on Aux Al level depending on the Trigger Type [ADV2-64]. If VFD is set to command via terminals and run signal is present, VFD will start only when analog signal reaches ON state level based on diagrams on the next page (at
or greater than for Higher, at or less than for Lower). When signal changes by Hysteresis value, VFD will stop. If at any point of VFD run mode, either Enable DI or Run command is deactivated, VFD will stop.
NOTE: This feature does not work with 3-wire (push button station) control mode selection. If HOA is in OFF position, VFD will stop even if analog signal is in ON state level.
- Trip: VFD trips based on analog level of the trigger type. When analog level reaches ON state, VFD will trip on Trip by Al and will require reset. (Four types of reset: Keypad, Digital input, Communication or Power cycle). VFD can be reset only when analog signal reaches OFF state. VFD can be reset when the AI signal changes by the Trigger Type [ADV2-64] Hysteresis value. When the VFD is stopped, the display will show Stop by Al message. When analog level reaches ON state, VFD will trip on Trip by AI and will require reset.
Analog Trigger Source [ADV2-63]: Selects whether the trigger will be a PID feedback signal or auxiliary input.
- PID Feedback: The feature will operate based on monitored PID F/B signal from the source chosen in [SET-18].
- Aux Input (Default): The feature will operate based on monitored AUX AI signal from the source set in [ADV2-58] and scaled in parameters [ADV2-59~61].
IMPORTANT: When a pressure transducer is used to measure water level, the Units selection should be Feet, and the sensor maximum value should be converted from psi to feet-[(n) psi $\times 2.31]$.

Trigger Type [ADV2-64]: The diagrams on the next page show the difference between Lower and Higher trigger types.

- Lower: Used to refill water into a tank to maintain at [ADV2-65]+[ADV2-66]. When level becomes less than Trigger Level [ADV2-65], the feature will be activated. When the level is equal or greater than Trigger Level [ADV2-65] + Trigger Hysteresis [ADV2-66], the function will be deactivated.
- Higher (Default): Used to pump water from a tank to maintain [ADV2-65]-[ADV2-66]. When level becomes greater than Trigger Level [ADV2-65], the function will be activated. When the level is equal to or less than Trigger Level [ADV2-65] - Trigger Hysteresis [ADV2-66], the function will be deactivated.
Trigger Level [ADV2-65]: The level at which the function will be activated.
- If ADV2-63 is set to Aux AI, the range is 0.0 to [ADV2-61].
- If ADV2-63 is set to PID F/B, the range is 0.0 to [SET-20].

Trigger Hysteresis [ADV2-66]: Hysteresis value is subtracted from trigger value in Higher trigger mode to determine OFF (trigger reset) state level. It is added to trigger value in Lower trigger mode.

- If ADV2-63 is set to Aux AI, the range is 0.0 to [ADV2-61].
- If ADV2-63 is set to PID F/B, the range is 0.0 to [SET-20].

The following diagrams show how this feature might be used:
Higher: VFD starts at or above 10 feet and stops at or below 8 feet..
Analog Trigger [ADV2-62] = 2_Run Enable
Trigger Type [ADV2-64] = 1_Higher
Trigger Level [ADV2-65] = 10 feet
Trigger Hysteresis [ADV2-66] $=2$ feet
Lower: VFD starts at or below 10 feet and stops at or above 12 feet.
Analog Trigger [ADV2-62] = 2_Run Enable
Trigger Type [ADV2-64] = 0_Lower
Trigger Level [ADV2-65] = 10 feet
Trigger Hysteresis [ADV2-66] = 2 feet

OPERATION

Control Options

Frequency Limits Controlled by Water (Analog) Level

This feature changes VFD or PID high frequency limit value (whichever is set as Auto Speed Reference) based on an Aux Input value. It can be used to limit pump speed in a constant pressure system by well or tank water level to help prevent over-pumping the source. It requires an additional transducer (level or pressure) installed in the well or tank.
To enable this feature, set the following parameters:
AUX AI Select [ADV2-58]: Select the analog input (AVII, AVIL, ACI) with the level transducer connection. Set unit type and scaling in [ADV2-59 to 61].

NOTE: It is recommended to use 4-20mA (less sensitive to electrical noise) level transducer.
Limit by Level [IO-16]: This parameter enables Limit by Level feature. If Enabled, the VFD will monitor the analog input set as Auto mode speed reference or PID feedback source and decrease High Frequency Limit value.
Max Limit Level [I0-17]: This parameter sets the maximum value (in Aux Input units) for VFD or PID High Frequency Limit control range. At signal above this value the VFD will use original VFD or PID High Frequency limit value.
Min Limit Level [I0-18]: This parameter sets the minimum value of Aux Analog input corresponding to the minimum value of High Frequency Limit [10-19]. If AUX input signal is below this value, VFD will use [I0-19] value as VFD or PID High Frequency value.
Min Freq Limit [IO-19]: This parameter sets Minimum value for High Frequency Limiting range corresponding to the min limit level [$10-18]$.

NOTE: VFD will show Limit by Level message when High Freq Limit is decreased by this feature.
For example: The diagram shows how pump speed might be limited by well or tank water level transducer signal.

In this example, a 4-20mA water level transducer is connected to an auxiliary input and selected in [ADV2-58]. Transducer range is scaled to 16 feet. Limit by Level feature settings are [$10-17]$ at 10 feet (14 mA), [$10-18$] at 4 feet $(8 \mathrm{~mA})$, and $[10-19]$ at 40 Hz . PID Low Freq Limit [SET-22] is 30 Hz and PID High Freq Limit [SET-23] is 55Hz.
When water level stays at or above 10 feet, VFD will maintain pressure with a frequency range from 30 Hz to 55 Hz . When water level drops below 10 feet, the VFD or PID High Frequency limit will be decreased linearly from 55 Hz at 10 feet to 40 Hz at 4 feet water level. If water level drops below 4 feet, the frequency limit stays at 40 Hz and drive will operate in the range from 30 to 40 Hz .

OPERATION
 Control Options

Dual Demand Control with Pipe Leak Protection

The Dual Demand control mode was designed for pump systems with distinct high and low demand requirements and to provide Pipe Leak protection. If the pump is sized to supply water to a high demand system such as a pivot but at some point will supply a low demand line (sprinklers or a hose), the system can be quickly over-pressurized, and the pump will cycle because it is too big for this low demand system.

With Dual Demand control, the VFD will determine which demand level to activate at wakeup. If the VFD is in sleep mode and the pivot system (high demand) valve is opened, the VFD will wake up in a short period of time. If the sprinkler system (low demand) valve is opened, it will take longer to wake up the VFD. If wakeup time exceeds the wake up time setting for the current demand mode, the VFD activates pipe leak alarm or protection.

Set the following parameters to activate this feature:
Dual Demand [ADV2-45]: Enabled or Disabled. If enabled, remaining parameters should be set during system start-up.
Pipe Leak Sel [ADV2-46]: Disabled or:

- Alarm: An alarm message will be activated.
- Trip: The VFD will trip on Pipe Leak fault.

NOTE: Pipe leak detection works with or without Dual Demand mode.
Last Wake Time [ADV2-47]: This is a read-only value that shows how much time it took for the last VFD wake up. Wake up monitoring starts when the VFD is in sleep mode and pressure drops below Setpoint and continues until pressure is below Wake-Up Level. Once Last Wake Time has been determined, the following time parameters can be adjusted.

H-H Wake Time [ADV2-48]: This is an adjustable setting for High to High Demand wake up time, which should be determined during system setup, after Last Wake-up Time is calculated. Recommended setting is 10-20\% greater than [ADV2-47] value. The default is 4 seconds.
H-L Wake Time [ADV2-49]: This is an adjustable setting for High to Low Demand wake up time, which should be determined during system startup. Recommended setting is 20-30\% greater than [ADV2-47] value for proper Pipe Leak protection operation. The default is 10 seconds.
L-L Wake Time [ADV2-50]: This is an adjustable setting for Low to Low Demand wake up time, which should be determined during system startup. Recommended setting is 20-30\% greater than [ADV2-47] value for proper Pipe Leak protection operation. The default is 14 seconds.
L-H Wake Time [ADV2-51]: This is an adjustable setting for Low to High Demand wake up time, which should be determined during system setup, after Last Wake-up Time is calculated. Recommended setting is 10-20\% greater than [ADV2-47] value. The default is 6 seconds.
LD Setpoint [ADV2-52]: This sets the Low Demand pressure setpoint. Adjusted to lower or higher than HD (Main) pressure setpoint value to provide desired pressure and prevent overpressure trip at pump start in Low Demand situation. The default value is 70.0 PSI.
LD Max Freq [ADV2-53]: This is a PID High Frequency Limit setting for Low Demand. Set to a low frequency to prevent overpressure trips during run but high enough to maintain pressure at LD Setpoint. The default value is 48.0 Hz .
LD Timer [ADV2-54]: This is an adjustable setting for Low Demand mode time. When VFD determines Low Demand mode during wake-up but at any point pressure cannot reach [ADV2-52] setpoint within the timer, VFD will switch control to High Demand mode. The default value is 10 seconds.
NOTE: If VFD trips on a fault or power is cycled during Low Demand mode, it will start in Low Demand mode after reset or power-up.

OPERATION
 Control Options

Lubrication Relay

The VFD has the capability to automatically activate a lubrication solenoid for line shaft turbine pumps. For industrial machines with an external lubrication supply, it can also activate it before starting the motor.

Timers are available to enable lubrication before, during, and/or after running the motor, in any combination.

To enable the lubrication function, set the following parameters:
Lubrication Output Relay [10-47 through 49]: Use one of the Relay Outputs (RA1-3), and set the corresponding parameter to 41 Lube/S-Clean.
Lube/S-Clean [10-41]: Select 1_Lubrication.
Pre-Lube Timer [10-43]: This setting determines relay activation time after a run command is received and before the VFD starts. When the timer expires, the lubrication relay will be deactivated and the VFD will start the motor. If a stop command is received or the VFD trips during Pre-lubrication, the relay will be deactivated.
Run-Lube Timer [10-44]: This setting determines relay activation time while the VFD is running.

- When set to a value greater than 0 and less than 6000, the relay will be activated at VFD start and will deactivate when the timer expires. If the VFD stops while the timer is active, the relay will deactivate.
- If the timer is set to the maximum 6000 sec , the relay will be activated during run mode until the VFD stops (no timing). If the VFD stops or trips, the relay will deactivate.
Post-Lube Tmr [10-45]: This setting determines relay activation time after the VFD comes to a stop (0 Hz).

Screen Clean Relay

When water is pumped from a lake or pond, the suction screen requires periodic cleaning. The VFD can automate this process by providing a relay output to an external solenoid valve that will discharge pressurized water to clean the screen. This feature works only in run mode in HOA Hand or Auto.

The VFD provides a one minute (non-adjustable) cleaning pulse at every start. When the cleaning pulse is done, the S-Clean Timer [$10-42]$ starts. When the timer expires, another cleaning pulse is activated. This cycle continues until the VFD stops.

To enable the Clean Screen function, set the following parameters:
Screen Clean Output Relay [IO-47 through 49]: Use one of the Relay Outputs (RA1-3), and set the corresponding parameter to 41_Lube/S-Clean.
Lube/S-Clean [10-41]: Select 2_Screen Clean.
S-Clean Timer [10-42]: Time between cleaning pulses.

Clean Pump/Anti Jam (De-ragging and impeller cleaning)

In de-watering and wastewater pump applications, the Clean Pump feature will provide periodic (set by the Clean Pump Timer [ADV2-56]) fast ramping starts to clean the impeller. VFD will ramp up to half speed and run for 5 seconds in Forward direction during VFD stop mode with a "Clean Pump" message. This will prevent the accumulation settling in the pump and impeller.

NOTE: The Clean Pump feature only works in Auto mode when a run command is removed by DI, AI Trigger or Comms (Sleep mode excluded).

The Anti-Jam feature can be used in submersible and grinding pump applications in locked impeller conditions. When enabled, it works in Auto and Hand modes, and the VFD will provide automatic anti-jam function if a stall condition is detected.

- If VFD trips or stops on Overload (OL), it will start the Anti-Jam cycle after a 10-second delay.
- The Anti-jam cycle provides five 6-second and half-speed starts, three in reverse and two in forward direction with 2-second intervals. It starts in Reverse and then alternates Forward and Reverse starts.
- When the Anti-Jam cycle (5 starts) is completed and the 5-second timer expires, the VFD will start the motor normally and try to run the pump. If VFD trips on OL again, it will start second Anti-jam cycle after 10-second delay.

NOTE: If impeller is not freed during two Anti-Jam cycles, the VFD will trip on overload and will require reset.

NOTE: The HLD function is disabled during Anti-Jam mode.
To enable the Clean Pump and/or Anti-Jam functions, set the following parameters:
Clean Pump Select [ADV2-55]: Set this parameter to the required cleaning function:

- 1_Clean Pump: set to enable the Clean Pump feature.
- 2_Anti-Jam: set to enable the Anti-Jam feature.
- 3_Clean/Anti-Jam: set to activate both features.

Clean Pump Timer [ADV2-56]: Set this parameter to desired interval in minutes for Clean Pump starts. The timer will start at every VFD stop.

OCA Level [PROT-07] and OCN Level [PROT-08]: Set to desired stall level for Anti-Jam function.

Timers

IMPORTANT: If two or more timers are activated with different time settings, the timer with the greater value will override other timers with a similar function.

Power On Run Delay

This timer provides run delay at VFD power-up with run command present to prevent multiple starts during power surges.
Set the following parameter to activate this feature:
Power On Delay [ADV-28]: Range from 0 to 6000 sec . (Default is 10 sec). When set to 0 sec , it is disabled.
When set to a value greater than 0 and VFD is powered up in any HOA mode, the timer will start counting and VFD start will be disabled until the timer expires.

Run Delay Timer (For Auto Mode)

This timer provides a delay at every VFD start when a run command is applied. The timer takes effect before every VFD start by run command, auto-restarts, sleep wake-up, etc.

NOTE: FO (Fire Override) mode will disable this timer.
Set the following parameter to activate this feature:
Run Delay Timer [ADV-29]: Range from 0 to 6000 sec . (Default is 0 sec). When set to 0 sec , it is disabled.
When set to value greater than 0 and VFD receives a start command, wakes up, auto resets, or restarts after a fault reset, the Start Delay timer will start counting. During timer counting, start is disabled and the VFD cannot be started in Hand or Auto mode. Stop command, Sleep mode, or tripping on a fault will reset this timer.

OPERATION
 Control Options

Auto Restart Timer after Faults

VFD provides ability to Auto-restart after time delay when tripped on fault.
If at any time during the auto restart process the run command is removed, the timer will finish and reset the fault, but the VFD will not start until the run command is reapplied.

NOTE: Shutdown and Fireman's Override Mode will override the restart process.
To modify the auto restart process, work with the following parameters:
Auto Timer Cntr [PROT-09]: Sets a minimum run time for successful restart and resetting a retry counter during retry attempt. Default is 3 hours.
Auto Restarts [PROT-10]: Set the allowed number of retry attempts. Range is from 0 to 10 tries. Default is 3 restarts.
Auto Retry Delay [PROT-11]: Sets a time delay before the next restart attempt. Range is 0 to 6000 seconds. Default is 120 seconds.

Minimum Run Timer

The Minimum Run timer delays VFD stop when a run command is removed. This timer is useful in vacuum pump, pressure washer and similar applications.
Submersible motors should run for a minimum of one minute to dissipate heat build-up from starting current.

Set the following parameter to activate this feature:
Minimum Run [ADV-34]: Range from 0 to 6000 seconds. When set to 0 sec, it is disabled.
When set to value greater than 0 and VFD is started in Auto mode, Minimum Run timer will start counting. During timer counting VFD will continue to run even if start command is removed.

Shutdown feature will override this timer.

Backspin Timer

The Backspin timer is designed to protect the VFD from tripping when starting a reverse spinning motor caused by water back-flow through a pump (no check valve) right after it was stopped.
Set the following parameter to activate this feature:
Backspin Timer [ADV-30]: Range from 0 to 6000 seconds. When set to 0 sec, it is disabled.
When set to value greater than 0 and VFD stops, Backspin timer will start counting. During backspin time VFD is disabled and cannot be started in Hand or Auto mode.

Auxiliary Timer

The Aux Timer can activate a relay output based on an Aux Timer input source and Timer Type. The timer is enabled when any digital output is set to Aux Timer Out. It works in any HOA and VFD mode (stop, running, fault, sleep, etc.)

NOTE: Aux Timer operates independently of any feature or function of the drive.
Set the following parameters to activate this feature:

Select a relay output for Aux Timer function in 10-47~ 49.

Aux Timer Type [ADV-31]: Five selections for functional type of Aux Timer:

- On-Delay: The timer output relay will be activated when Aux Timer input is activated and timer expires and will stay activated until Aux Timer input is deactivated. This is the default setting.
- Off-Delay: The timer output relay will be activated when Aux Timer input is activated and will be deactivated when Aux Timer input is deactivated and timer expires.

- One-Pulse (on rising edge): The timer output relay will be activated when Aux Timer input is activated and will be deactivated after timer expires no matter if input is active or not. Changing input state during timer counting will not deactivate output relay.
- On-Pulser: The timer output relay will be activated when Aux Timer input is activated and, after timer expires, it will be deactivated for duration of the timer. Thus timer will provide symmetrical ON-OFF pulses while timer input is activated.
- Off-Pulser: The timer output relay will stay deactivated when Aux Timer input is activated and, after timer expires, it will be activated for duration of the timer. Thus timer will provide symmetrical OFF-ON pulses while timer input is activated.

Aux Timer Time [ADV-32]: Range from 0 to 6000 seconds. Default is 10 seconds.
Aux Timer Input [ADV-33]: Select the appropriate digital input or relay output as the Aux Timer input source. Default is FWD input.

Performance Control Features

Acceleration/Deceleration Control

Standard Rates

The VFD accelerates and decelerates a motor in VFD control mode (PID is off) at a controlled rate based on the following parameters:

Accel Time [SET-11]: Time in seconds for the drive to accelerate from 0 Hz to maximum frequency.
Decel Time [SET-12]: When Stop Mode [SET-16] is set to Decelerate, time in seconds to slow down from maximum frequency to 0 Hz .

The defaults for these parameters are determined by the Application [SET-00] setting, but can be adjusted as required.

IMPORTANT: Setting acceleration or deceleration times that are too short may trigger over-current or overvoltage faults. Use of a suitable dynamic breaking unit/resistor can help with short deceleration times.

NOTE: When PID is enabled, the VFD will ramp up to PID Low Freq Limit at [SET-11] rate and then it will follow the rate calculated by PID control. During deceleration, the VFD will follow PID deceleration rate down to PID Low Freq Limit and then will follow [SET-12] rate.

Change by Frequency

Acceleration and deceleration rates can be changed when the VFD reaches a target frequency. For example: It may be desirable to start a motor quickly, as with a submersible pump, and then slow the response at higher speeds.

The VFD starts at the Standard rate and switches to Second ACC [SET-54] and Second DEC [SET-55] when it reaches ACC Change Freq [SET-53]. When the VFD decreases frequency below [SET-53]-[SET-56] it will switch back to the Standard rates.

ACC Change Freq [SET-53]: Frequency to switch from Standard acceleration/deceleration rate to second acceleration/decelera-
 tion rate.
Second ACC [SET-54]: Time in seconds for drive to accelerate from 0 Hz to maximum frequency. This rate takes effect when frequency is above [SET-53]. Default is 60 sec .
Second DEC [SET-55]: When Stop Mode [SET-16] is set to Decelerate, time in seconds to slow down from maximum frequency to 0 Hz . This rate takes effect when frequency is above [SET-53]. Default = 60 sec .
ACC/DEC Hyster [SET-56]: Hysteresis sets the difference between 2nd ACC/DEC rates activation and deactivation frequencies. This setting is subtracted from [SET-53] to delay the switch back to the [SET-12] rate. Default $=1.0 \mathrm{~Hz}$.
Hopping Carrier [VFD-45]: When enabled, VFD will automatically change carrier frequency from 2 to 5 kHz (Depends on the drive frame size) in predetermined offset pattern to minimize audible noise from the motor.
H-Carrier Pitch [VFD-58]: Determines the running duration for each carrier frequency value.

Analog Repeater Output

Analog signal repeater provides analog output signal scaled to selected analog input in any signal format.
For example, if ACI is set to 2-10VDC and AO to 6 _ACl, it will provide $0-10 \mathrm{~V}$ or $4-20 \mathrm{~mA}$ (whichever is selected) output scaled to 2-10V. In this case, 2V Input $=0 \%$ (0 V or 4 mA) output and 10 V input $=100 \%$ (10 V or 20 mA) output.

Auxiliary Analog Input

Auxiliary Analog Input (Aux AI) can be used by 2nd PID control, Trigger by Analog Level, and Freq Limit by Analog Level features. Any analog input can be set as an Aux Al and can be scaled to appropriate value in engineering units.
Set the following parameters:
Aux AI Signal [ADV2-58]: Used for control features by analog level and 2nd PID Loop. Select AI input to designate for Aux AI. The default is AVII.
Aux AI Unit [ADV2-59]: Select the units to be measured by the AI.
Aux Unit Format [ADV2-60]: Select the precision of the Al units. This can be set to whole numbers, one decimal place or two decimal places.
Aux Max Value [ADV2-61]: the maximum value of the auxiliary input can be set from zero to 30000.
NOTE: If using a PT100 or PTC for Aux AI, set the maximum value to $200^{\circ} \mathrm{C}$ for PT100s and $\mathrm{T}_{\text {HIGH }}$ for PTCs.

Frequency Detection Trigger (FDT)

The VFD can provide a selected relay output control by five different types of frequency detection triggers (FDT1 through FDT5). The function is activated when any relay output is set to $2-5$ in parameters 10-47-49.

FDT-1: Select 2_FDT-1 for any relay output in 10-47-49. It does not require any other parameters for setup. VFD will activate a selected relay when output frequency equals to the frequency command value.

FDT-2: Select 3_FDT-2 for any relay output in 10-47-49. It requires two following parameters for setup:
FDT-2 Frequency [I0-52]: VFD will activate a selected relay when output frequency is equal or greater than [10-52] value.
FDT-2 Bandwidth [I0-53]: VFD will deactivate relay when frequency becomes less than [10-52] minus [10-53] value.

OPERATION Control Options

FDT-3: Select 4_FDT-3 for any relay output in 10-47~49. It requires two following parameters for setup:
FDT-3 Frequency [I0-54]: VFD will activate a selected relay during acceleration between frequencies [$10-54]+0.5 \mathrm{~Hz}$ and [10-54] + [10-55]. VFD will activate relay during deceleration between frequencies [10-54]+ [10-55]-0.5Hz and [10-54].
FDT-3 Bandwidth [10-55]: Provides offset from [I0-54] to deactivate relay during
 acceleration.

FDT-4: VFD will activate selected relay output when frequency is less than FDT-4/5 Setting [10-57] value. When frequency is greater than [10-57] value, VFD will deactivate relay output.
FDT-5: VFD will activate selected relay output when frequency is greater than
FDT-4/5 Setting [10-57] value. When frequency is less than [I0-57] value, VFD will deactivate relay output.
FDT-4/5 Setting [10-57]: The common frequency parameter for both FDT-4 and FDT-5 functions.

Scheduling

The X-Drive allows the user to create up to four scheduled VFD control events (Programs) in Auto mode.
Each Program can activate one of three event types:

- Scheduled Start/Stop (VFD Run): This selection activates start and stop commands in Auto mode. If Auto Run Command [SET-08] is set to Digital Input with run command present or to Ext HOA in Auto, the VFD will start only when the VFD Run Program reaches On Time, and it will stop when OFF Time is reached. If during scheduled run HOA is changed to OFF or run command is removed, VFD will stop.
- During a scheduled event, the VFD can run the motor with selected speed control (analog, PID, Comms) or with preset speeds
- Switch to preset frequency: During scheduled event VFD will run motor with selected preset frequency, set in [VFD-04-06], when running in Auto mode without PID control.
- Switch to preset setpoint (S-Point): During scheduled event VFD will change motor control to the selected preset setpoint, set in [ADV-74-76], when running in Auto mode with PID control.
NOTE: Scheduled Start/Stop and switch to PID preset Setpoint (PID Preset S-Point) commands work in Multi-VFD setup. In this instance, preset frequency commands will be ignored.
NOTE: In Multi-VFD mode, be sure to program all VFDs with identical scheduling setup and synchronized clock settings

Set the following parameters to activate programs:

Program 1 Parameters:

Program 1 Setting [ADV-56]: This setting selects the type of event Program 1 will activate, including:

- 0_None: Scheduling program 1 is disabled.
- 1_VFD Run: Provides Enable/Disable status to VFD run command. If any Program is set to 1_VFD Run and there is a Run Command in Auto Mode, the VFD will start only when the program reaches On Time (ADV-57) and will stop when it reaches OFF time (ADV-58). If the HOA is changed to OFF or run command is removed during a scheduled run, the VFD will stop.
- 2_Step Freq 1: VFD will run motor with preset speed (step frequency 1), selected in VFD-04 when running in Auto mode without PID control.
- 3_Step Freq 2: VFD will run motor with preset speed (step frequency 2), selected in VFD-05 when running in Auto mode without PID control.
- 4_Step Freq 3: VFD will run motor with preset speed (step frequency 3), selected in VFD-06 when running in Auto mode without PID control.
- 5_S-Point-A: VFD will change PID reference to S-Point-A [ADV-74] when in Auto mode with PID control.
- 6_S-Point-B: VFD will change motor control to S-Point-B [ADV-75] when in Auto mode with PID control.
- 7_S-Point-AB: VFD will change motor control to S-point-AB [ADV-76] when in Auto mode with PID control.
Program 10n Time [ADV-57]: Selects when Program 1 event will be activated. Setting range is from 00:01 to 24:00.
Program 1 Off Time [ADV-58]: Selects when the selected Program event will be deactivated.
NOTE: If both on time [ADV-57] and off time [ADV-58] are set to identical values, the program is disabled.
Program 1 Week Day(s) [ADV-59]: Selects which days of the week the Program will be effective. For example, for 5 working days of the week, set to _MTWTF_ and for weekends set to S \qquad S.

Program 2 Parameters:

Program 2 Setting [ADV-60]: Selects the type of event Program 2 will activate. It has the same selections as Program 1 Setting [ADV-56].
Program 2 On Time [ADV-61]: Selects when Program 2 event will be activated. 00:01 setting disables this step.
Program 2 Off Time [ADV-62]: Selects when Program 2 event will be deactivated.
Program 2 Week Day(s) [ADV-63]: Selects which days of the week Program 2 will be effective.
NOTE: To schedule an event to start one day and stop on another day, use two Programs. The $1^{\text {st }}$ Program
ON time should be set to the desired start time and OFF time to 0:01 (inactive OFF event). The $2^{\text {nd }}$ Program ON time is set to 0:01 (inactive ON event) and OFF time is set to desired stop time.

Program 3 Parameters:

Program 3 Setting [ADV-64]: Program 3 event type. It has the same selections as Program 1 Setting [ADV-56]. Program 3 On Time [ADV-65]: Selects when Program 3 event will be activated. 00:01 setting disables this step.
Program 3 Off Time [ADV-66]: Selects when Program 3 event will be deactivated.
Program 3 Week Day(s) [ADV-67]: This setting selects which days of the week Program 3 will be effective.

Program 4 Parameters:

Program 4 Setting [ADV-68]: Program 4 event type. It has the same selections as Program 1 Setting [ADV-56].
Program 4 On Time [ADV-69]: Selects when Program 4 event will be activated. 00:01 setting disables this step.
Program 4 Off Time [ADV-70]: Selects when Program 4 event will be deactivated.
Program 4 Week Day(s) [ADV-71]: Selects which days of the week Program 4 will be effective.

OPERATION

Run Command examples using one program

Example 1: Scheduled Run command is active from 5am to 1pm every Monday

- Prog-1 Setting [ADV-56]: 1_VFD Run
- Prog-1 On Time [ADV-57]: 05:00
- Prog-1 Off Time [ADV-58]: 13:00

- Prog-1 Week Day [ADV-59]: _M \qquad
Example 2: Scheduled Run command is activated on Monday 13:00 until next Monday 00:05AM.
- Prog-1 Setting [ADV-56]: 1_VFD Run
- Prog-1 On Time [ADV-57]: 13:00
- Prog-1 Off Time [ADV-58]: 05:00

- Prog-1 Week Day [ADV-59]: _M \qquad
Example 3: Run enable is never active (program is disabled).
- Prog-1 Setting [ADV-56]: 1_VFD Run
- Prog-1 On Time [ADV-57]: 13:00
- Prog-1 Off Time [ADV-58]: 13:00

- Prog-1 Week Day [ADV-59]: _M \qquad

Scheduling example using three programs

In this example, we want to schedule three programs to have the VFD accomplish the following:

1. Set VFD Start at 6:00 (6AM) and VFD Stop at 23:00 (11PM) during work days (Mon, Tue, Wed, Thu, Fri)
2. Have the VFD change from No-PID speed reference (keypad, analog input or Comms) every work day to preset Step Frequency-1 [VFD-04] from 11:00 (11AM) to 17:00 (5PM)
3. Have the VFD change from No-PID speed reference on Monday and Friday to Step Frequency-2 [VFD-05] from 15:00 (3PM) to 19:00 (7PM).

1st Program Parameters:

- Prog-1 Setting [ADV-56]: 1_VFD Run
- Prog-1 On Time [ADV-57]: 06:00
- Prog-1 Off Time [ADV-58]: 23:00
- Prog-1 Week Day [ADV-59]: _MTWTF_

2nd ProgramParameters:

- Prog-2 Setting [ADV-60]: 2_Step Freq-1
- Prog-2 On Time [ADV-61]: 11:00
- Prog-2 Off Time [ADV-62]: 17:00
- Prog-2 Week Day [ADV-63]: _MTWTF_

3rd Program Parameters:

- Prog-3 Setting [ADV-64]: 3_Step Freq-2
- Prog-3 On Time [ADV-65]: 15:00
- Prog-3 Off Time [ADV-66]: 19:00
- Prog-3 Week Day [ADV-67]: _M____

Monitoring Functions

Home Screen Status Displays

The Home Screen displays default and user-selectable information about the operational status of the VFD. The keypad ESC key returns to the Home Screen from any menu.

1. Operating Status: This field indicates the system actions currently active.

- Run/Stop
- Lubrication
- Limit by PID 2
- Limit by Level
- Ctrl by PID 2
- Limit by Temp
- Stopped by AI
- Stall

- Backspin Timer

2. Command Source: This field identifies the currently configured source for RUN commands.

- K = Keypad
- $\mathrm{T}=$ Terminal control
- $R=$ RS485
- $0=0$ ption board

3. Frequency Source: This field identifies the currently configured source for speed (frequency) control.

- K=Keypad/PID
- $\mathrm{V} 1=$ from AV1
- $\mathrm{R}=\mathrm{RS} 485$
- V2 = from AV2
- $0=$ Option board
- $C=$ from ACl
- $1-15=$ Step speed (DI)
- J = Jog frequency

4. User Selectable Display Line 1: Use Arrow and Enter keys to step through selections and to change setpoints.

- (H) Actual output speed when running (Hz) for both HAND and AUTO modes.
- (F) Keypad Setpoint (Hz) for HAND mode. This is adjustable using the keypad. In AUTO mode, the running frequency is displayed.
- (P) PID Setpoint in application based units (PSI, inWC, etc.) [SET-2l]. This is adjustable using the keypad.
- Use Line Display 1 [SET-57] to permanently set the viewable parameter, cycling the power of the drive or keypad to update the display. User options include:

0_Freq Command
1_Output Frequency
2_Multi-Fn Display
3_Output Current
5. User Selectable Display Line 2: Displays Output Current.
6. User Selectable Display Line 3: Use Arrow keys to step through choices. This display corresponds to choices in [SET-57]. Refer to "Parameter Descriptions > SET Menu" on page 207 for a complete list of options.

OPERATION

Monitoring Functions

View Screens

In addition to the Home Screen status information, nine predefined user information screens are available.
From any menu location, press the keypad $\mathbf{F 2}$ key repeatedly to cycle through the view screens.
View Screen 1: This screen displays the following:

- \quad Freq = The actual output frequency (Hz) at the time
- \quad Ref = The PID target setpoint [SET-21]
- Fbk = The actual feedback level from the transducer.

Run	K/k
Freg	60.00 Hz
Ref	60.0 PS
Fbk	58.7 PS
JOG	View1

View Screen 2: This screen displays feedback from the analog inputs as a percentage.

View Screen 5: This screen displays the following:

- Temperature of the IGBTs in ${ }^{\circ} \mathrm{C}$
- Temperature of the capacitors in ${ }^{\circ} \mathrm{C}$.

Run	K/K
\|CBT	24.10 C
Capl	23.60 C
JOG	View5

Run	K/K
Fred	60.00 Hz
Spd	3600 RPM
JOG	View6

View Screen 7: This screen displays the following:

- DC-Bus voltage ripple
- DC-Bus voltage ripple
- Output voltage.

Run	KIK
Rple	8.3%
DCB	675.7 V
Vout	460.0 V
Jog	View7

View Screen 8: This screen displays the following:

- Counter value
- Output power
- Ground fault.

Run	KIK
Cont	0
Pout	1.4 kW
GndF	0.02%
Jog	Views

View Screen 9: If an FE Connect Bluetooth communication card has been installed, this screen displays the code for connecting with the mobile application.

Protection Features

Signal Loss Protection for Analog Inputs

Analog signal loss can be detected for signals with minimum values greater than zero (4-20mA and 210VDC).

NOTE: There is no signal loss protection for AVI2 input.

ACI Signal Loss

To enable Signal Loss Protection for an ACI input, adjust the following parameters:
ACI Input Selection [10-00]: Make sure input is set to the transducer's signal type.
ACI Loss Trip [10-01]: Select the drive's response to signal loss detection:

- 0_Disable: The drive has no signal loss protection.
- 1_Hold Speed: VFD runs at previous speed (2 sec before signal loss).
- 2_Stop/Start: VFD will restart when signal is present.
- 3_Trip Stop: VFD will stay tripped until it is reset.

ACI Loss Level [10-02]: Set the desired signal loss trigger level:

- 0_Below Minimum: Triggered when the level is equal or less than the minimum value.

4-20mA minimum: 3.8 mA
2-10V minimum: 1.9VDC

- 1_Below 0.5xMin: Triggered when the level is equal or less than half the range minimum value for the time selected in ACI Loss Delay [10-03].
$4-20 \mathrm{~mA}$ minimum: 2 mA
2-10V minimum: IVDC
- 2_Redundant VFD: Triggered when the signal is either below 1_0.5xMin or at the transducer maximum value for the time set in ACI Loss Delay [10-03].
ACI Loss Delay [10-03]: Set the delay between signal loss detection and drive's response. Default is 1.0 sec .

AVII Signal Loss

To enable Signal Loss for an AV11 input, adjust the following parameters:
AVII Input Selection [10-05]: Make sure input is set to the transducer's signal type.
AVI1 Loss Trip [10-06]: Select the drive's response to signal loss detection:

- 0_Disable: The drive has no signal loss protection.
- 1_Hold Speed: VFD runs at previous speed (2 sec before signal loss).
- 2_Stop/Start: VFD will restart when signal is present.
- 3_Trip Stop: VFD will stay tripped until it is reset.

AVII Loss Level [10-07]: Set the desired signal loss trigger level:

- 0_Below Minimum: Triggered when the level is equal or less than the minimum value.

4-20mA minimum: 3.8 mA
2-10V minimum: 1.9VDC

- 1_Below 0.5xMin: Triggered when the level is equal or less than half the range minimum value for the time selected in AVII Loss Delay [10-08].
$4-20 \mathrm{~mA}$ minimum: 2 mA
2-10V minimum: IVDC
- 2_Redundant VFD: Triggered when the signal is either below 1_0.5xMin or at the transducer maximum value for the time set in AVII Loss Delay [10-08].

AVII Loss Delay [I0-08]: Set the delay between signal loss detection and drive's response. Default is 1.0 sec.

Transducer Redundancy

Transducer Redundancy allows two transducers to be wired to the VFD analog inputs and monitored simultaneously. The main transducer works as PID feedback, while the other is a spare (reserve). If the reading from main transducer is abnormal, the reserved one replaces the main transducer.

With transducer redundancy, the VFD can detect transducer failure at low and maximum signal and switch to the spare transducer.

For the spare transducer, it is recommended to use one with a range 1.5 x or 2 x larger than the main transducer. For example, if the main transducer is 0-100PSI, the spare transducer can be 0-150PSI or 0-200PSI. This will decrease the chance of both transducers being damaged by hydraulic surges.

If the main transducer reads a smaller value than the spare transducer with a difference more than 8% of the main's max value, the VFD will switch the PID feedback source to the spare transducer to decrease chance of over pressurizing the system.

When VFD uses spare transducer as PID F/B source and both transducers read abnormal values, the VFD will trip on Signal Loss fault.
NOTE: All other VFD features that use values as a percentage of the maximum feedback value (F/B Max) will always use the main transducer's range.
To enable Transducer Redundancy, adjust the following parameters:
PID F/B Source [SET-18]: Selects the analog input terminal for PID Feedback source for the main pressure transducer. Select ACl or AVII input.
ACI Input Selection [10-00] or AVII Input Selection [IO-05]: In the appropriate parameter (ACI or AVII), make sure input is set to the correct signal for the type of main transducer.
Spare AI Selection [IO-12]: Selects the analog input terminal for PID Feedback source for the spare pressure transducer. Select ACI or AVII input.
Spare Max Value [IO-11]: Set to the spare transducer max range value.
PID F/B Unit [SET-19]: Select the units for the feedback signal, used for PID F/B Max [SET-20] and Spare Max Value [10-11].
ACI Loss Level [IO-02] or AVII Loss Level [IO-07]: Set both parameters to 2_Redundant to allow the VFD to set the maximum value and minimum feedback value to disable the main transducer and activate the spare transducer.

- In Spare Transducer Mode if the main transducer reading becomes normal, VFD will continue running with the spare transducer until power is cycled.
ACI Loss Delay [IO-03] or AVII Loss Delay [IO-08]: Duration the ACl or AVII signal is in a loss condition before initiating an ACl or AVII Loss Trip operation.

Motor Temperature Protection with PT100 or PTC Sensor

PT100 and PTC (Positive Temperature Coefficient) sensors relay motor temperature readings to the VFD, which, depending on its programming, can protect the motor by lowering output frequency, stopping operation, etc. Two sensors of the same type (PTC or PT100) can be connected and operate simultaneously. In this case, only one sensor needs to reach the specified temperature level to trigger motor protection.

If using a PT100 or PTC for PID Feedback or Aux AI, set the maximum value to $200^{\circ} \mathrm{C}$ for PT100s and $\mathrm{T}_{\text {HIGH }}$ for PTCS in PID F/B Max [SET-20] and Aux Max Value [ADV2-61], respectively.

PT100 Sensor

To enable PT100 Motor Temperature Protection, install the sensor directly into the motor. Then complete the wiring and adjust parameters as specified below:

3-Wire PT100 Wiring

Signal	Wires	Terminals	
		AVI: PT100\& AFM2	ACl: PT100 \& AFM1
V-	N/A	N/A	N/A
I-	Green	ACM	ACM
V+	White	AFM2 (dip switch 0-20mA)	AFM1 (dip switch 0-20mA)
I+	Brown	AVI1 (dip switch 0-10V)	ACl (dip switch 0-10V)

4-Wire PT100 Wiring

Signal	Wires	Terminals	
		AVII: PT100 \& AFM2	ACl: PT100 \& AFM1
V-	White/Blue	ACM	N/A
I-	Red/Blue	AFM2 (dip switch 0-20mA)	ACM (dip switch 0-20mA)
V+	Red	AVI1 (dip switch 0-10V)	ACl (dip switch 0-10V)
I+			

ACI Input Sel [IO-00] or AVII Input Sel [IO-05]: In the appropriate parameter (ACI or AVII), set to 4_PT100 \& AFM2.
PT100 Level 1 [PROT-30]: Set temperature level for the first sensor. When the sensor detects the motor temperature above this setting for the duration entered into [PROT-33], it will refer to [PROT-32] for VFD response.
PT100 L-1 Delay [PROT-33]: Enter the time delay between a high motor temperature detection and the VFD's response.
PT100 L-1 Freq [PROT-32]: Select the fall-back level of the output frequency once a high temperature level [PROT-30] is sensed for a predetermined length of time [PROT-33].

NOTE: If the motor temperature falls below PT100 Level 1 [PROT-30], the drive returns to normal operation.
PT100 Level 2 [PROT-31]: Set temperature level for the second sensor. When the sensor detects the motor temperature above this setting, it will refer to [PROT-19] for VFD response.
PTC/PT100 Sel [PROT-19]: Select the VFD response to sensing the motor temperature selected in [PROT-31].

PTC Sensor

1. Connect a 2-wire PTC sensor between an analog output (either AFM1 or AFM2) and an analog input (ACl or AVII).
2. Set the analog output DIP switch to $0-20 \mathrm{~mA}$.
3. Set the analog input DIP switch to 0-10 V .
4. Adjust the following parameters:

ACI Input Sel [IO-00] or AVII Input Sel [IO-05]: In the appropriate parameter (ACl or AVII), set to 3_PTC.
AFM1 Out Select [IO-59] or AFM2 Out Select [IO-61]: In the appropriate parameter (AFM1 or AFM2), set to 9_Constant Output.
AFM1 mA Select [IO-63] or AFM2 mA Select [IO-64]: In the appropriate parameter (AFM1 or AFM2), set to $0 _0-20 \mathrm{~mA}$.

Set the PTC Curve

The PTC manufacturer's specifications and PTC Curve must be used for the following. An example PTC Curve is shown for explanation.
Choose the highest temperature on the curve that the sensor will detect, based off of the intended motor application.

NOTE: $\mathrm{R}_{\text {HIGH }}$ must be larger than 500 ohms and less than 100,000 ohms
$\mathrm{T}_{\mathrm{HIGH}}=$ Highest temperature
$\mathrm{R}_{\text {HIGH }}=$ Highest resistance
Locate the "knee" or bend of the curve and determine the corresponding temperature and resistance.
$\mathrm{T}_{\text {MID }}=$ Mid temperature
$\mathrm{R}_{\text {MID }}=$ Mid resistance
Choose the lowest temperature on the curve that the sensor will detect.

$\mathrm{T}_{\text {LOW }}=$ Lowest temperature
$\mathrm{R}_{\text {Low }}=$ Lowest resistance
Use the below calculations to set analog input PTC curve parameters:

ACI Input	AVII Input	Calculation
ACI Low \% [ADV2-16]	AVI1 Low \% [ADV2-10]	$\mathrm{T}_{\text {LOW }} / \mathrm{T}_{\text {HIGH }}{ }^{*} 100 \%$
ACI Mid \% [ADV2-18]	AVII Mid \% [ADV2-12]	$\mathrm{T}_{\text {MID }} / \mathrm{T}_{\text {HIGH }}{ }^{*} 100 \%$
ACI High \% [ADV2-20]	AVI1 High \% [ADV2-14]	100\%
ACI Low Value [ADV2-15]	AVI1 Low Value [ADV2-09]	$\mathrm{R}_{\text {LOW }}{ }^{*} \mathrm{I}_{\mathrm{DC}}$
ACI Mid Value [ADV2-17]	AVII Mid Value [ADV2-11]	$\mathrm{R}_{\text {MID }}{ }^{*} \mathrm{l}_{\text {D }}$
ACI High Value [ADV2-19]	AVI1 High Value [ADV2-13]	$\mathrm{R}_{\text {HIGH }}{ }^{*} \mathrm{I}_{\mathrm{DC}}$

NOTE: $\mathrm{I}_{\mathrm{DC}}=\mathrm{R}_{\text {HIGH }} / 10 \mathrm{~V}$
AFM1 DC LvI [ADV2-06] or AFM2 DC Lvl [ADV2-07]: In the appropriate parameter (AFM1 or AFM2), set the maximum current for the sensor. To determine the maximum current, perform the following calculation:

$\mathrm{I}_{\mathrm{DC}} / 0.020 \mathrm{~A}$ * 100%

$\mathrm{I}_{\mathrm{DC}}=\mathrm{R}_{\mathrm{HIGH}} / 10 \mathrm{~V}$
0.020 A is the high amperage from the analog output DIP switch setting ($0-20 \mathrm{~mA}$)

The calculation multiplies by 100% to convert to a percentage; the VFD reads DC Lvl as a percentage.
PTC Level [PROT-20]: Set the PTC Level as determined by the following calculation:
$\mathrm{T}_{\text {LEVEI }} / \mathrm{T}_{\text {HIGH }}{ }^{*} \mathbf{1 0 0 \%}$
$\mathrm{T}_{\text {LeVEL }}=$ Trip Level temperature
PTC/PT100 Level [PROT-19]: Select the VFD's response to the PTC trip level temperature (consult "Parameter Descriptions > Protection Menu" on page 226).

High Load Detection

High Load Detection (HLD) protects the VFD and equipment against damage from an over-torque condition. Two options are available:

- HLD by Current: The VFD trips when current is above HLD Level [SET-48] with frequency equal to or greater than HLD Freq [SET-49] for a duration of HLD Delay [SET-50].
- HLD by Torque: The VFD calculates a High Load Torque Limit curve across the full frequency range based on motor parameters, VFD Base Frequency, and HLD settings. The VFD then trips when torque rises above this curve with frequency equal to or greater than HLD Freq [SET-49] for a duration of HLD Delay [SET-50]. This feature is primarily used for centrifugal loads such as centrifugal pumps or fans. It is not recommended for progressive cavity pumps or constant torque loads.

To enable High Load Detection, adjust the following parameters:
HLD Select [SET-47]: Disable, By Current, or By Torque.
HLD Min Torque [PROT-58]: Only if using HLD by Torque, set minimum torque level percentage at 0 Hz . Default is 10%.
HLD Level [SET-48]: For HLD by Current, set as a percentage of motor FLA (SFA) (default is 110\%). For HLD by Torque, set as a percentage of nominal torque at base frequency. If all conditions are met, VFD will trip above this level.
HLD Frequency [SET-49]: Set minimum frequency for HLD by Current or Torque detection.
HLD Delay [SET-50]: Delay range from 0 to 360 seconds. When timer expires, if current or torque is still above limits and frequency is still above [SET-49], VFD will trip based on [SET-47].
HLD Recovery Time [SET-51]: 0 to 720 min (default is 0 min). If timer is set to value greater than 0 minutes, VFD will restart after timer expires. If set to 0 and the VFD trips, manual or remote reset is required (no auto retries).
If the VFD trips the first time on high load, it will restart after the Recovery timer expires. If VFD trips again, the timer value will be doubled. The VFD will continue restart attempts, doubling the timer value until it reaches 720 minutes (12 hours). Then every restart will be in 720 min. HLD Recover Cnt [SET-52] displays the countdown before the next restart attempt.
When the VFD finally runs without tripping for 180 sec, the recovery timer will be reset to original setting and at next high load trip VFD will wait for original [SET-51] time value. If the run command is removed, or HOA is set to OFF, the high load feature is canceled and the [SET-51] timer is reset to its original setting.

Fine Tune Settings for HLD by Torque

1. Verify accuracy of Motor FLA (SFA) [SET-03], Motor Voltage [SET-05], and VFD Base Freq [VFD-02]. These values determine nominal torque.
2. Adjust HLD Frequency [SET-49] to be equal to minimum operational frequency Low Freq Limit [SET-13] or PID Lo Hz Limit [SET-22].
3. Run motor at minimum frequency and verify water movement for pump or air movement for fans.
4. While running the motor at minimum frequency, determine whether VFD trips on HLD:

- If system trips on HLD using default HLD Level [SET-48], increase level by 3\% until system does not trip.
- If system does NOT trip using default HLD Level [SET-48], decrease the level by increments of 3\% until system trips, then increase back by 3\%.

5. If nuisance tripping occurs, increase HLD Min Torque [PROT-58] by increments of 1%.
6. Adjust HLD Delay [SET-50] to duration acceptable for operation.

Underload Protection (Dry Well or Belt Loss)

Underload Detection (ULD) monitors motor current and frequency to protect against conditions such as a dry well, broken pump, or broken drive belt. Two options are available:

- ULD by Current: The VFD trips when current reading is less than set value and speed is equal to or greater than set value, the VFD will trip on ULD.
- ULD by Torque: The VFD calculates an Underload Torque Limit curve across the full frequency range based on motor parameters, VFD Base Frequency, and ULD settings. The VFD then trips when torque falls below this curve with frequency equal to or greater than ULD Frea [SET-43] for a duration of ULD Delay [SET-44]. This feature is primarily used for centrifugal loads such as centrifugal pumps or fans. It is not recommended for progressive cavity pumps or constant torque loads.

To enable Underload Protection, adjust the following parameters:
Prime Time [10-39]: Some pump applications require time for the pump to self-prime before the load stabilizes. This setting adds a 0 to 6000 second delay before the VFD starts monitoring for Underload or NoFlow conditions, which protects against nuisance faults. The delay operates at any VFD start, in both Hand and Auto modes, including Run, Wake, Restart, or Reset commands.
ULD Select [SET-41]: Disable, By Current, or By Torque.
ULD Min Torque [PROT-57]: If using ULD by Torque, set minimum torque level percentage at 0 Hz . Default is 10%.
ULD Level [SET-42]: For ULD by Current, set as a percentage of motor FLA (SFA) (default is 45\%). For ULD by Torque, set as a percentage of nominal torque at base frequency. If all conditions are met, VFD will trip below this level.
ULD Frequency [SET-43]: Set minimum frequency for ULD by Current or Torque detection.
ULD Delay [SET-44]: Delay range from 1 to 360 seconds (default is 2 sec). When timer expires, if current is still below ULD Level [SET-42] or torque is still below ULD Torque Limit curve and frequency is still above ULD Frequency [SET-43], VFD will trip based on ULD Select [SET-41].
ULD Recovery Time [SET-45]: 0 to 720 min (default is 30 min). If timer is set to value greater than $0 \mathrm{~min}-$ utes, VFD will restart after timer expires. If set to 0 and the VFD trips, manual or remote reset is required (no auto retries).

For dry well protection, Recovery Time should be long enough to allow the well to be filled. If VFD trips the first time on Underload, it will restart after the Recovery timer expires. If VFD trips again, the timer value will be

Protection Features

doubled. The VFD will continue restart attempts, doubling the timer value until it reaches 720 minutes (12 hours). Then every restart will be in 720 min . ULD Recover Cnt [SET-46] displays the countdown before the next restart attempt.

When VFD finally runs without tripping for 180 sec , the recovery timer will be reset to original setting. Then, at next underload trip, the VFD will wait for the well to fill for ULD Recovery T [SET-45] time value.
If the run command is removed, or HOA is set to OFF, the Underload feature is canceled and the ULD Recovery T [SET-45] timer is reset to its original setting.

Fine Tune Settings for ULD by Torque

1. Verify accuracy of Motor FLA (SFA) [SET-03], Motor Voltage [SET-05], and VFD Base Freq [VFD-02]. These values determine nominal torque.
2. Adjust ULD Frequency [SET-43] to be equal to minimum operational frequency [SET-13] or [SET-22].
3. Run motor at minimum frequency and verify water movement for pump or air movement for fans.
4. While running the motor at minimum frequency, determine whether VFD trips on ULD:

- If system trips on HLD using default ULD Level [SET-42], decrease level by 3\% until system does not trip.
- If system does NOT trip using default ULD Level [SET-42], increase the level by increments of 3% until system trips, then decrease back by 3%.

5. If nuisance tripping occurs, lower ULD Min Torque [PROT-57] by increments of 1%.
6. Adjust ULD Delay [SET-44] to duration acceptable for operation.
7. Adjust ULD Recovery Time [SET-45] to a duration that fills up the well enough to allow motor to run minimum time before another ULD trip.

Overpressure

The Overpressure feature stops the VFD when PID feedback exceeds a set value in either Hand or Auto.
To enable this feature, adjust the following parameters:
OverPress Set [SET-39]: Disable, OP Trip, or OP Auto Reset.

- When enabled, if PID Feedback exceeds OverPress Level [SET-40], the VFD trips on Overpressure fault.
- If setting is OP Trip, manual or remote reset is required. If Reset Restart [VFD-36] is enabled and a run command is present, the VFD will restart when reset.
- If setting is OP Auto Reset, the VFD will restart when PID feedback falls below Wake-Up Level [SET-31] and a run command is still present.
OverPress Level [SET-40]: Overpressure trigger level in PID feedback units, 0.0 to PID F/B Max [SET-20].

No Flow Protection

The VFD can monitor a system flow switch to provide pump protection and more reliable sleep mode operation.

Flow Switch Terminal [10-21 through 28]: Connect the flow switch to one of the Digital Inputs (MII-8) and set the corresponding parameter to 37_Flow Switch.
No Flow Mode [IO-38]: Disabled, Trip, or Sleep.
Prime Time [10-39]: Some pump applications require time for the pump to self-prime before the load stabilizes. This setting adds a delay before the VFD starts monitoring for Underload or No-Flow conditions, which protects against nuisance faults. The delay operates at any VFD start, in both Hand and Auto modes, including Run, Wake, Restart, or Reset commands.
No Flow Freq [IO-40]: Range from PID/VFD Freq Low Limit to PID/VFD Freq High Limit.
When No Flow Mode [10-38] is set to 1_Trip and the VFD runs at a frequency greater than No-Flow Freq [10-40] Ionger than Prime Time [10-39] with the flow switch contact open, the VFD will trip on No Flow Fault.

When No Flow Mode [10-38] is set to 2_Sleep, the flow switch will become an additional condition for sleep mode. When VFD runs with PID control and determines that all sleep mode conditions are met and the flow switch is open during Sleep delay, VFD will go into sleep mode.

Broken Pipe Protection (for Pump Applications)

The VFD has the ability to detect a broken pipe in the system. The VFD must be running with PID Control in Auto mode for this feature to be active.
To enable this feature, adjust the following parameters:
Broken Pipe Level [SET-36]: 0.0 to PID F/B Max [SET-20]. Setting of 0.0 disables the feature. When pressure falls below this level and VFD continues to run above Broken Pipe Freq [SET-37], Broken Pipe Delay [SET-38] starts. Broken Pipe Freq [SET-37]: PID Low Hz Limit [SET-22] to PID Hi Hz Limit [SET-23].
Broken Pipe Delay [SET-38]: The timer provide a delay for triggering a Broken Pipe fault.
NOTE: Manual or remote reset is required.

Stall Prevention

This feature protects the motor and equipment from over-torque damage. Set a desired stall level in parameters OCA Level [PROT-07] (at acceleration) and OCN Level [PROT-08] (at steady speed).

When motor current reaches Stall level either during acceleration or at steady speed, VFD will decrease output frequency to maintain motor current below Stall level.

Protection Features

ADVANCED APPLICATION OPTIONS
 Operation with Permanent Magnet Motors

ADVANCED APPLICATION OPTIONS

Operation with Permanent Magnet Motors

Permanent magnet (PM) motors are different than induction motors in that PM motors have magnets installed in the rotor. A PM motor is more efficient than an induction motor because the PM motor does not need power to magnetize the rotor. Therefore, a PM motor uses less input power to create the same shaft power.
Internal PM motors (IPM) have the magnets installed in the rotor laminations rather than on the surface of the laminations, which are called surface PM motors (SPM).
The X-Drive controls PM motors using Sensorless Vector Control (SVC). SVC can also be used to control induction motors. SVC is different than scalar (VF) mode in that the drive uses feedback of the 3-phase current to regulate current at startup and adjust frequency of operation for torque compensation.

PM SVC operation has a sequence of three steps:

1. DC Alignment - A DC current and voltage is applied to the motor to align the rotor to the magnetic poles. This alignment requires 3 seconds.
2. I/F Control - A controlled current start of the motor is performed. This technique provides higher starting torque than VF mode.

3. Advance V / F Control - With the motor started, frequency compensation stabilizes the current load. Torque compensation adjusts output voltage to correct for torque control.

ADVANCED APPLICATION OPTIONS
 Operation with Permanent Magnet Motors

Setup FE MagForce Pump Motor

Franklin Electric MagForce motors use an internal permanent magnet motor (IPM) design with 4-pole construction and synchronous speed. This means the electrical frequency is the same speed as the shaft speed with no slip in the rotor. Since the motor has 4 poles, the electrical frequency running the motor will need to be twice that of a 2-pole motor for same desired RPM.

FE MagForce motors are rated to operate up to 3600 RPM in North America or 3000 RPM in the EU, and not to exceed the maximum SFA rating of the motor. To run pumps at their rated speed, use the pump RPM calculation "Poles x RPM / 120 = Electrical Frequency (Hz)" in order to set the VFD Max Freq [VFD-00].

Use the following steps to configure an X-Drive for use with a FE MagForce:

Pump RPM	Electrical Frequency
3600	$4 \times 3600 / 120=120 \mathrm{~Hz}$
3450	$4 \times 3450 / 120=115 \mathrm{~Hz}$
3525	$4 \times 3525 / 120=117.5 \mathrm{~Hz}$
3000	$4 \times 3000 / 120=100 \mathrm{~Hz}$
2850	$4 \times 2850 / 120=95 \mathrm{~Hz}$
2938	$4 \times 2938 / 120=98 \mathrm{~Hz}$

Basic Setup

IMPORTANT: If the VFD has been used in a previous application, the drive parameters should be completely reset using Parameter Reset [ADV-03], option 4_Reset all Param.

1. Application [SET-00]: Set to option 8_FE MagForce. This selection assumes the use of a 4-pole, 3-phase PM motor running at 120 Hz and automatically updates all relevant parameters to the proper defaults.
IMPORTANT: The FE MagForce application should ONLY be used with Franklin Electric MagForce motors. Do NOT use this selection with other permanent magnet motors.
2. Input Phase [SET-01]: Verify that the setting matches the type of power supply-3-phase (default).
3. Motor Horsepower [SET-02]: Enter the maximum rated horsepower from the motor nameplate.
4. Motor FLA (SFA) [SET-03]: Set to the current rating on the nameplate associated with the power rating of the pump.
5. Motor RPM [SET-04]: Enter the rated motor RPM from the motor nameplate.
6. Motor Voltage [SET-05]: Enter the rated voltage from the motor nameplate.
7. VFD Max Freq [VFD-00]: The highest frequency allowable. This should be set to the calculated electrical frequency corresponding to the target pump RPM in the table
 above.
8. VFD Base Freq [VFD-02]: This should be set to the motor nameplate frequency rating.
9. Carrier Freq [SET-62]: This should be set to 4 kHz for sine filters and 2 kHz for $\mathrm{dV} / \mathrm{dt}$ filters.

Permanent Magnet Specific Parameters

For FE MagForce applications, the drive automatically sets:

- Control Method [Motor-05]: This should be 2_Sensorless Vector Control.
- Motor Type [Motor-06]: This should be 2_PM-IPM.
- Motor Poles [Motor-07]: This should be 4 for a FE MagForce motor.
- PM Inertia [Motor-08]: This value is automatically calculated.

ADVANCED APPLICATION OPTIONS
 Operation with Permanent Magnet Motors

Motor Specific Parameters

For FE MagForce applications, the drive automatically sets:

- PM Rs [Motor-09]: Motor stator resistance.
- PM Ld [Motor-10]: Motor inductance d-axis.
- PM Lq [Motor-11]: Motor inductance q-axis.
- PM Ke Coeff [Motor-13]: Motor parameter Ke (Vphase, rms / krpm).

Autotune Characteristic Parameters

For FE MagForce applications, autotune is not needed. However, if the drive consistently exceeds the motor current specification during DC Alignment and I/F control, then an autotune may be needed. Refer to "Autotune Characteristic Parameters" on page 102.

Tune motor control - DC Alignment

For FE MagForce applications, no adjustments are needed. However, if there are problems during DC Alignment, refer to "Tune motor control - DC Alignment" on page 102.

Tune motor control-I/F Control

For FE MagForce applications, no adjustments are needed. However, if there are problems during I/F Control, refer to "Tune motor control - I/F Control" on page 103.

Tune motor control - PM Control

For FE MagForce applications, no adjustments are needed. However, if there are problems during PM Control, refer to "Tune motor control - PM Control" on page 103.

Setup Non-Franklin Electric PM Motors

The X-Drive can be programmed to operate general purpose permanent magnet motors through the following procedure:

Basic Setup

IMPORTANT: If the VFD has been used in a previous application, the drive parameters should be completely reset using Parameter Reset [ADV-03], option 4_Reset all Param.

1. Application [SET-00]: Set to option 9_PM Motor. This selection assumes the use of a 4-pole, 3-phase PM motor running at 120 Hz and automatically updates relevant parameters to the proper defaults.
IMPORTANT: Do NOT use the FE MagForce selection with non-Franklin Electric permanent magnet motors.
2. Input Phase [SET-01]: Verify that the setting matches the type of power supply-3-phase (default).
3. Motor Horsepower [SET-02]: Enter the maximum rated horsepower from the motor nameplate.
4. Motor FLA (SFA) [SET-03]: Enter the rated motor FLA, found on the motor nameplate.
5. Motor RPM [SET-04]: Enter the rated motor RPM from the motor nameplate.
6. Motor Voltage [SET-05]: Enter the rated voltage from the motor nameplate.
7. VFD Max Freq [VFD-00]: The highest frequency (speed) allowable.
8. VFD Base Freq [VFD-02]: This should be set to the motor nameplate frequency rating.
9. Carrier Freq [SET-62]: This should be set to 4 kHz for sine filters and 2 kHz for $\mathrm{dV} / \mathrm{dt}$ filters. Carrier frequency should be at least 1.5 times the resonant frequency of the filter.

ADVANCED APPLICATION OPTIONS
 Operation with Permanent Magnet Motors

Permanent Magnet Specific Parameters

Enter motor parameters unique to the installation:

- Control Method [Motor-05]: This should be 2_Sensorless Vector Control.
- Motor Type [Motor-06]: Set to 1_PM-SPM or 2_PM-IPM.
- Motor Poles [Motor-07]: Set the number of poles in the motor. (Poles = Base Freq x 120 / RPM.)
- PM Inertia [Motor-08]: If unknown, use the value calculated by the drive.

Motor Specific Parameters

Input motor characteristic parameters. If any motor characteristic parameters are unknown besides PM PG Angle [Motor-12], then an autotune is required to measure these values.

NOTE: If any of the following are unknown, leave blank.

- PM Rs [Motor-09]: Motor stator resistance.
- PM Ld [Motor-10]: Motor inductance d-axis.
- PM Lq [Motor-11]: Motor inductance q-axis.
- PM PG Angle [Motor-12]: Motor offset angle.
- PM Ke Coeff [Motor-13]: Motor control coefficient.

Autotune Characteristic Parameters

1. If a sine filter is connected to output of drive, either disconnect the capacitors or remove sine filter between drive and motor cable so that the motor cable is directly connected to the drive. Make sure all power to the drive is disconnected before changing wiring.
2. Set Motor A-Tuning [Motor-00] to 3_PM Rotating or 4_PM No-Rotation. If a load is on the motor and cannot be removed, then a "no-rotation" option should be selected. Remove load from the motor to then use "Rotating."
a. An autotune "no-rotation" will output high frequency into the motor to calculate the motor impedance values but not the Ke Coeff.
b. An autotune with rotation will do same as "no-rotation" and then turn the rotor of the motor to calculate the Ke Coeff (Vphase, rms / krpm).
3. Start Autotune by initiating a start command.
4. Once Autotune is complete, the drive will populate PM characteristic parameters.
5. If using a sine filter, reconnect filter between drive and motor cable.

Tune motor control - DC Alignment

Related parameters:

- I/F Current [Motor-24]: Percentage of nominal motor current [SET-03] used to regulate output current during DC current during PM DC Alignment.
- DC-Tun Curr P [Motor-39]: Proportional gain value regulating DC current during DC Alignment of PM motor.
- DC-Tun Curr I [Motor-40]: Integral gain regulating DC current during DC Alignment of PM motor.

The DC Alignment process rarely needs adjusting. However, if the motor is not aligning properly, the user may detect unexpected high current loads or an unusual rumbling sound at low frequency. This might occur when the motor leads are very long (> 3000 ft) or high load prevents motor movement. In this case, start by increasing the I/F Current [Motor-24], and then DC-Tun Curr P [Motor-39] if necessary.

ADVANCED APPLICATION OPTIONS
 Operation with Permanent Magnet Motors

Tune motor control - I/F Control

Related parameters:

- I/F Current [Motor-24]: Percentage of nominal motor current [SET-03] used to regulate AC current during I/F Control.
- Freq I/F to PM [Motor-27]: When increasing frequency, the frequency to switch modes from I/F mode to PMSVC mode.
- Freq PM to I/F [Motor-28]: When decreasing frequency, the frequency to switch modes from PMSVC mode to I/F mode.
- I/F FItr Time [Motor-29]: Low-pass filter time of current being commanded from I/F Current [Motor-24].

The drive regulates current level at I/F Current [Motor-24] as frequency ramps up to Freq I/F to PM [Motor-27]. Once above this frequency, the Advance V/F Control becomes active. Ramping down to Freq PM to I/F [Motor-28] switches out of Advance V/F Control to I/F Current [Motor-24] regulation. The current regulation averages current value base on I / F fltr time [Motor-29].
If the motor load does not rotate up to FreqI/F to PM [Motor-27], the I/F Current needs to increase. If the I/F Current is at maximum without load rotating, reduce I / F current to below 100% and set acceleration rate to a higher value. If more torque is required, increase Carrier Frequency [SET-62].

Tune motor control - PM Control

Related parameters:

- Torque Filter T [Motor-15]: Response time in controlling torque to motor.
- Torque Cmp Gain [Motor-17]: Gain value for output voltage increase to compensate for voltage drop on stator resistance at high motor loads in torque compensation function. For PM motors, max value is 5000. Setting this parameter to 0 will remove I/F control and disable stability.
- PM Bandwidth HS [Motor-25]: Allowable frequency bandwidth around desired frequency in order to adjust operating frequency to prevent vibrations in motor operation.
- PMSVC FItr Gain [Motor-26]: Gain value in adjusting the operating frequency from the desired frequency to prevent vibrations in motor operation.
- PM Trq Comp I/F [Motor-37]: PM Torque Compensation in I/F Mode.
- PM Trq Comp SVC [Motor-38]: PM Torque Compensation in SVC Mode (Advance V/F Control).

IMPORTANT: PM Trq Comp I/F [Motor-37] and PM Trq Comp SVC [Motor-38] are only operable in FE MagForce application. PM Motor Application uses Torque (mp Gain [Motor-17].

The drive outputs nominal voltage based on desired frequency. Frequency compensation (stabilizer) is quickly adjusting the desired frequency to prevent overcurrent or high voltage on DC bus. The torque compensation control is adjusting output voltage to ensure rotor magnetization is at correct level for desired torque with respect to operating frequency. The switching frequency should be increased by at least 1.5 times the resonant frequency of the sine filter.

PM motors can be unstable with no loads at high frequencies. If there is a light or no load, the Torque Cmp Gain [Motor-17] will need to be increased until stability is achieved. Increasing the switching frequency helps in providing stability. If a more precise output frequency is desired, lower the PM Bandwidth HS [Motor-25].

ADVANCED APPLICATION OPTIONS

Duplex Pump Configurations

Duplex Pump Configurations

Jockey Pump Control

A Jockey pump system consists of high HP Main pump and low HP Jockey pump. The VFD that controls the main pump provides constant pressure control with PID loop for that pump and start signal via communication or relay output for Jockey pump. The jockey pump can be controlled by starter, soft-starter or another VFD.

The jockey will be started by the main VFD relay output (RA1, RA2, or RA3) if a relay output is set to 48_Jockey Pump [10-47 to 10-49], or through RS-485 communications if it is controlled by another VFD. Refer to "Multi-Drive Configurations" on page 109 for more information about controlling a jockey with a separate VFD.

1. When the system is in Auto mode with pressure equal to or less than Wake-Up Level [SET-31] (from Sleep feature), the main pump will start first and will maintain system pressure. Then:

- If demand drops low, jockey pump will start, and main pump will stop.
- If demand becomes highest, jockey will start and run together with main pump.

2. When the system is in Auto mode with pressure greater than Wake-Up Level [SET-31] but less than J-Start Press [ADV-49], jockey will start first.
3. When the system is in Auto mode with pressure greater than J-Start Press [ADV-49], both jockey and main pumps will be off.

At low demand, when the main pump's speed is less than Main Stop Freq [ADV-51] and system pressure is at Setpoint for J-Start Delay [ADV-52], jockey will start and, after a two second delay, the main pump will stop. The VFD uses J-Start Press [ADV-49] and S-Boost Value [SET-29] (Sleep feature) for jockey start/stop control.

During Jockey pump run, if system pressure becomes:

1. Equal to or greater than S-Boost Value [SET-29], jockey pump will stop.
2. Less than Wakeup Level Wake-Up Level [SET-31] for two seconds, the main pump will start and after J-Start Delay [ADV-52] system pressure is:

- Below or at Setpoint and main VFD speed is greater than J-Start Free [ADV-50] for two seconds, jockey will continue to run helping main pump to maintain pressure setpoint.
- At or above Setpoint and main VFD speed is less than J-Start Freq [ADV-50] and greater than Main Stop Freq [ADV-51] for two seconds, jockey will stop, and main pump alone will maintain pressure setpoint.
- At or above Setpoint and less than Boost Pressure and main VFD speed is less than Main Stop Freq [ADV-51] for Main Stop Delay [ADV-53], main pump will stop, and jockey will continue to run until pressure is greater than S-Boost Value [SET-29].
- Equal to or greater than S-Boost Value [SET-29] for two seconds, both main and jockey pumps will stop.
To enable jockey pump control, adjust the following parameters:
Jockey Mode [ADV-48]: This setting enables or disables the feature.
J-Start Press [ADV-49]: Pressure setpoint for jockey start when all other conditions have been met. Range = 10\% of PID Setpoint [SET-21] to PID Setpoint [SET-21]. Default is 54 PSI.
J-Start Freq [ADV-50]: Jockey starts when main pump is running above this frequency and all other conditions have been met. Range = PID Lo Hz Limit [SET-22]to PID Lo Hz Limit [SET-22].
Main Stop Freq [ADV-51]: Main pump will stop if it runs below this frequency. Jockey will continue to run until pressure settings have been met. Range $=$ PID Lo Hz Limit [SET-22] to PID Lo Hz Limit [SET-22].
J-Start Delay [ADV-52]: Time delay before jockey starts when all conditions have been met. Range $=1$ 6000 seconds. Default is 20 sec .
Main Stop Delay [ADV-53]: Time delay before main pump stops when all conditions have been met. Range $=1-6000 \mathrm{sec}$. Default is 5 sec .

Dual PID Loop Control

Balancing Pressure in Large Systems Using Multiple Pumps

Booster pumps connected in series in long pipe systems and controlled by VFDs can be set for automatic pressure balancing without the need for communication.

Each pump has its own VFD with suction (ST) and discharge (PT) pressure transducers. When there is a long distance between pumps, the discharge pressure at any one pump will typically be greater than the suction pressure at the next pump.

- The discharge side is programmed as a standard constant pressure PID loop (PID 1). Refer to "Standard Operation with PID Feedback Control" on page 71.
- The suction side transducer is installed and programmed as an Auxiliary input in inverse mode (PID 2).

When suction pressure of PID 2 is at or above its setpoint [ADV2-38], normal VFD operation will be maintained using the PID 1 loop.
When pump 1 suction pressure drops below PID 2 setpoint because of inadequate water supply, PID 1 High Freq Limit will be decreased to reduce flow, prevent cavitation, and prolong pumping time. The pump 1 discharge pressure will drop and VFD2 will decrease its High Freq Limit and VFD3, etc. will follow. In this way, all pumps will act the same without any communication between them.

To enable this feature, set the following parameters:
AUX AI Select [ADV2-58]: Select the terminal (AVII, AVI2, ACI) with the PID 2 transducer connection. Set unit type and scaling in [ADV2-59 to ADV2-61].
PID2 Output [ADV2-36]: This parameter should be set to 1_Limit ${ }^{\text {st }}$. PID.
PID2 Type [ADV2-37]: This parameter should be set to 1_PID Inverse for this application.
PID2 Setpoint [ADV2-38]: Desired suction pressure.
PID2 P-Gain [ADV2-39]: Set the proportional gain value for PID2 operation. Default is 30\%
PID2 I-Gain [ADV2-40]: Set the integral gain value for PID2 operation. Default is 1 second.
PID2 Low Limit [ADV2-41]: Set the minimum frequency for PID2 output. Range is [SET-22] to [ADV2-42].
PID2 High Limit [ADV2-42]: Set the maximum frequency for PID2 output. Range is [ADV2-41] to [SET-23].

ADVANCED APPLICATION OPTIONS
 Dual PID Loop Control

Using Dual PIDs to Control Output when Pumping from a Tank or Well

Dual PID control can be used to protect a pumping system from a low water condition when using a tank or well as the water source.

The VFD uses a pressure transducer (PID 1) on the discharge side of the pump and a level transducer (PID 2) in the tank. Both PIDs run simultaneously but only one at a time provides speed reference to the VFD.

- The discharge side is programmed as a standard constant pressure PID loop. Refer to "Standard Operation with PID Feedback Control" on page 71.
- The level transducer is installed and programmed as an Auxiliary input in inverse mode (PID 2).

When the tank level reading of PID 2 is at or above PID2 Set Point [ADV2-38], normal VFD operation will be maintained using the PID 1 loop.

When level reading is less than PID 2 setpoint for 2 seconds, VFD frequency reference will be switched from PID 1 loop to PID 2. When level stays less than PID2 Set Point [ADV2-38], PID 2 output will be decreased to PID 2 Low Limit [ADV2-41]. If water level increases and approaches PID2 Set Point [ADV2-38], the VFD speed will be increased.

If level setpoint is maintained but frequency is not high enough to pressurize the system up to [SET-21] $+1 \%$, the VFD frequency will be controlled by PID 2 output. During PID 2 operation, if system pressure is equal to or greater than [SET-21] $+1 \%$ for 2 seconds, the VFD will switch speed reference from PID 2 back to PID 1.

When running on PID 2 , there are two parameters to switch back to PID 1 or stop VFD:

1. PID2 Exit Level [ADV2-44]: If PID2 level reading becomes greater than this setting for 10 seconds, VFD will switch speed reference from PID 2 back to PID 1.
2. PID Stop Delay [ADV2-43]: If VFD has been running at PID 2 Low Limit [ADV2-41] and cannot maintain the level setpoint for this time setting, VFD will stop with the message Low Level displayed on the screen.

- During Low Level stop or at power-up, if level reading is greater than [ADV2-38] but less than [ADV244] for 10 seconds, VFD will start running with PID 2 output as speed reference.
- During Low Level stop or at power-up, if level reading is equal to or greater than [ADV2-44] for 10 seconds, VFD will start running with PID 1 output as speed reference.

To enable this feature, set the following parameters:
AUX AI Select [ADV2-58]: Select the terminal (AVII, AVI2, ACI) with the PID 2 transducer connection. Set unit type and scaling in [ADV2-59 to ADV2-61].
PID2 Output [ADV2-36]: This setting selects feature options:

- $1^{\text {st }}$. PID Off: When PID2 falls below level setpoint, VFD control is switched from PID 1 to PID 2.

PID2 Type [ADV2-37]: This parameter should be set to 1_Inverse for this application.
PID2 Setpoint [ADV2-38]: Desired tank water level to switch PID control.
PID2 P-Gain [ADV2-39]: Default is 30\%
PID2 I-Gain [ADV2-40]: Default is 1 second.
PID2 Low Limit [ADV2-41]: Set the minimum frequency for PID2 output. Range is [SET-22] to [ADV2-42].
PID2 High Limit [ADV2-42]: [ADV2-41] to [SET-23].
PID2 Stp Delay [ADV2-43]: Time to stop VFD when running on PID 2 at Low Freq Limit.
PID2 Exit Level [ADV2-44]: If feedback value is greater than [ADV2-44] for 10 seconds, then operation switches from PID 2 to PID 1.

Multi-Motor Configurations

Several multi-motor configurations are available:

- Equal Run Time
- Soft Start Mode
- Lead-Lag
- Run Time Alt
- Rotate Lead

Multi-Motor (MMC) Relay Control for Pump Applications

The multi-motor configuration for constant pressure systems provides control for up to 4 pump motors (8 with optional I/O board) in a Lead, Lag configuration.

The VFD controls speed of the Lead pump using its own PID feedback loop and the VFD motor output. If the Lead pump cannot maintain setpoint pressure, the VFD uses relay outputs to trigger Lag pumps through a starter, soft-starter, or another VFD. Relay output function [10-47, -48, or -49 etc.] should be set to 47_MMC Out. The lowest number relay set to MMC will be Lag 1.

This feature does not provide an alternation or Lead pump replacement in case of pump or VFD failure.
To enable Lead, Lag Relay Control, set the following parameters:
MMC Mode [ADV-10]: Set to 3_Lead-Lag.
Lag Start Freq [ADV-18]: When the lead pump runs above this frequency, it sets the first condition for starting a Lag pump. Range is Lag Stop Freq [ADV-23] to PID Hi Hz Limit [SET-23]. Default = 59.5 Hz .
Lag Start Delay [ADV-19]: Sets a delay time to start Lag pump when both frequency and pressure conditions are met. Default = 10 sec .
Lag Start Level [ADV-20]: Sets a percentage of PID F/B Max [SET-20] to calculate MMC Below Setpoint as the second condition for starting a Lag pump. Range is 0.1 to 10%. Default $=2 \%$.

NOTE: MMC Below Setpoint = [SET-21] - \{[SET-20] x [ADV-20]/100\}.
Lead Freq Drop [ADV-21]: Output frequency drop value with [ADV-22] at Lag pump start to prevent system overpressure condition. Default $=10 \mathrm{~Hz}$.
MMC Decel Time [ADV-22]: Sets the deceleration time for the [ADV-21] frequency drop. Default $=2 \mathrm{sec}$.
Lag Stop Freq [ADV-23]: When the Lead runs below this frequency, it sets the first condition for stopping Lag pumps. Default = 35 Hz .
Lag Stop Delay [ADV-24]: Sets a delay time to stop Lag pump when both frequency and pressure conditions are met. Default = 4 sec.
Lag Stop Level [ADV-25]: Sets a percentage of PID F/B Max [SET-20] (frequency) to calculate MMC At Setpoint as the second condition for stopping a Lag pump. Default = 0.3%.

NOTE: MMC At Setpoint = [SET-21] + \{[SET-20] x [ADV-25]/100 \}.
Lead Freq Bump [ADV-26]: Output frequency increase value with [ADV-27] at Lag pump stop to prevent system underpressure condition. Range is 0 to [SET-23]**0.4. Default $=0 \mathrm{~Hz}$.
MMC Accel Time [ADV-27]: Sets the acceleration time for the [ADV-26] frequency bump. Default $=2 \mathrm{sec}$.

ADVANCED APPLICATION OPTIONS

Multi-Motor Configurations

Lag Pump Start sequence: If the Lead motor runs at a speed equal or greater than [ADV-18] with system pressure less than MMC Below Setpoint for [ADV-19] delay, the VFD will decrease output frequency by [ADV-21] value for [ADV-22] time and then activate relay output to start the first Lag Pump in sequence. After a nonadjustable 1 sec delay, the VFD will change [SET-23] to its original value and check for Lag Start/Stop conditions. If demand is still high, the VFD will repeat Lag Start sequence for additional Lag pumps.

Lag Pump Stop sequence: If the Lead motor runs at a speed equal or less than [ADV-23] with system pressure equal or greater than MMC At Setpoint for [ADV-24] delay, the VFD will increase output frequency by [ADV-26] value for [ADV-27] time and then it will deactivate relay output to stop the first Lag Pump. After a non-adjustable 1 sec delay, the VFD will change [SET-22] to its original value and check for Lag Start/Stop conditions. If demand is still low, the VFD will repeat Lag Stop sequence for additional Lag pumps. If all Lag pumps are stopped, the VFD will check for Sleep Mode conditions.

If the VFD run command is removed during MMC operation, all Lag pump relays will deactivate in sequence with a 1 sec delay between each relay. The delay will protect from voltage surges in the power line when Lag pumps stop. The VFD will then stop the Lead based on the selected method (Decel or Coast).

If the VFD trips on a fault during MMC operation, the VFD will immediately deactivate all Lag pump relays and it will coast stop.

ADVANCED APPLICATION OPTIONS
 Multi-Drive Configurations

Multi-Drive Configurations

Multi-Pump Application

A multi-drive/pump configuration is ideal for a system that needs constant pressure with a wide range of flow, such as an apartment building or a manufacturing facility. The use of multiple pumps and drives has the advantage of increased efficiency at both very low and very high flow rates, as compared to a single pump sized to accommodate typical usage. A single pump may not be able to supply the complete flow range and is likely to be inefficient at the ends of the range.

In contrast, a series of pumps/drives that operate at a high efficiency at low flow rates can maximize effectiveness across the full spectrum of demand. The Lead pump will start first to supply minimal usage. Then, as additional flow is needed, Lag pumps will start in order of their sequential ID number.
Additional pumps/drives can be added as standby units to ensure full operation in case of fault or maintenance of one of the primary units. The X-Drive system can support up to eight pumps and drives.

Method of Operation

\triangle CAUTION

Risk of bodily injury or equipment damage. A pressurized system can cause a pump to deadhead.

- To prevent this, size the pump to be able to withstand additional head equivalent to the regulating pressure of the system.

The communication between VFDs will provide Master/Follower control and Lead-Lag sequence switching which will allow pumps to alternate. The pump system can be set with brown box VFDs, separately enclosed VFDs, or multiple VFDs enclosed in one industrial enclosure. For complete redundancy, each VFD requires a pressure transducer in order to operate in PID mode and to provide full Master/Follower control.

If not every VFD in the system has pressure transducer feedback, the system can be set to run those VFDs as Followers only at preset, fixed Lag Speed (no PID control).

The multi-pump application operates as a constant pressure system using PID feedback control.
Each drive is assigned a sequential ID number, and an initial role. Roles can be alternated; however, to be included in the alternation cycle, each drive requires its own transducer.

Multi-Drive Configurations

VFD Role Definitions for Multi-Drive Operation

X-Drives Multi-VFD pump system with full Master/Follower Control

PT1-PT4 are Pressure Transducers
NOTE: For proper system operation each VFD should have active run command and HOA switch in Auto mode and all VFDs should have identical control parameter settings.

Master: The drive that controls starting of the overall system and activating each pump.

- The Master is always the VFD with the lowest ID. In addition, the Set VFD Ready [ADV-47] parameter must be set to Ready.
- If the Master loses communication to the system, the remaining VFD with the lowest ID takes over as Master. For this reason, the best practice is to program all drives with the same parameter settings.
- The overall system becomes active when the Master is in Auto.
- The Master monitors its own transducer, along with the Lead drive frequency to determine when to start or stop remaining drives.
- The Master can also function in any of the other roles.
- If the Master HOA is put in OFF position, the whole system will stop.

Lead: The Lead VFD operates in PID mode using its transducer as feedback to control the speed.

- If the drive is set to operate at a fixed frequency, it cannot function as a Lead.
- Assignment of the Lead drive can be assigned to other drives on a rotating basis.

IMPORTANT: Since the Lead role can change, each drive needs its own transducer; or, the system could have a single transducer with analog splitters to feed each drive. Each drive needs to be set to the same setpoint. If a change in setpoint is needed, the setting needs to be updated on all the drives.

Lag: A Lag drive becomes active when the Master determines that the setpoint cannot be met by the Lead.

- VLag Spd Source [ADV-43] sets the Lag drive to run either on its own PID or at a fixed frequency. For a Lag drive to be alternated to a Lead, it must be set to PID mode.

NOTE: If a Lag is operating in PID mode, it could possibly run at a higher frequency than the Lead at times as the overall system balances itself.

Standby: A Standby drive is not part of the Lead/Lag control sequence, but it can be a Master. One or more Standby drives serve as spares to replace a Lead or Lag in a faulty or deactivated condition, and are added at the end of the sequence of drives.

Jockey: A Jockey is used to maintain system pressure in a low situation-refer to "Jockey Pump Control" on page 104 for more information.

- In a multi-drive system, the Jockey VFD ID is always the last one in the sequence and does not change roles during system alternation.
- During normal operation with high demand, the Jockey will function like the last ID Lag if required to maintain pressure. It will be the last to start and the first to stop.
- During low demand operation, the Lead drive will act as the Main for regular Jockey control-refer to "Jockey Pump Control" on page 104.

Sequence Assignment

The system rotates drive roles through the network based on the parameter setting Alternation [ADV-45]. There are three possible scenarios:

Alternation-Disabled: This setting might be appropriate when the system primarily operates at a low flow rate and uses the Lag pumps as backups when needed.

- In this case, the Lead pump could be sized for efficiency at a lower flow rate and would always be the first to start.
- The Lead/Master would regulate the pressure of the system using its own PID sensor.
- The Lag pumps could be sized differently and could either use their own PID or be set to run at a specific frequency.
Alternation-Timer: This scenario might be used to rotate the Lead role to distribute wear on a system with continuous operation.
- In this case, the roles would be rotated after running for a specific time, set in Alternation TMR [ADV-46].
- In addition to balancing usage, this practice would help ensure the proper functioning of Lag units that might otherwise be idle for extended periods.
- The best practice would be to size and program all pumps/drives the same.

Alternation-Master Power-Up: For a system that is stopped and started on a periodic basis, such as a manufacturing plant, it might be desirable to rotate system roles to maintain consistent performance.

- In this case, the Lead changes each time the system is activated (Master is power cycled).

In all cases, the Master will be the drive with the lowest ID number [ADV-37]. If the Master faults, is switched to Hand, or is set to Not Ready [ADV-47], the role is shifted to the drive with the next lowest ID. If there is a break in communication, the lowest ID on any remaining functional network assumes the Master role.

Example Rotation Pattern

Event	VFD 1	VFD 2	VFD 3	VFD 4	VFD 5
System Start	Master/Lead	Lag 1	Lag 2	Lag 3	Standby 1
First Alternation	Master/Lag 3	Lead	Lag 1	Lag 2	Standby 1
Second Alternation	Master/Lag 2	Lag 3	Lead	Lag 1	Standby 1
VFD 1 Fault	Standby 1	Master/Lag 3	Lead	Lag 1	Lag 2
Next Alternation	Standby 1	Master/Lag 2	Lag 3	Lead	Lag 1

Fault Handling

If a fault occurs on a Lead or Lag drive, the Master will remove the drive from the sequence, rotate the Lead/ Lag roles of the remaining drives, and initiate a start command for the next drive in sequence.

If any drive detects an Over Pressure, Broken Pipe, or Pipe Leak fault, it communicates the condition to the Master, which then stops operation of the entire system. All other faults are local to an individual drive.

ADVANCED APPLICATION OPTIONS

Multi-Drive Configurations

Installation and Setup

Configuration

Each pump in the system should be controlled by its own drive, using its own PID feedback loop. (See text for other control options for Lag and Jockey drives.)

- All drives using PID should be programmed to the same Setpoint [SET-21].

Communications

Communication can be established via standard CAT-5 cables and RJ-45 ports or via shielded cables and VFD terminals SG+ and SG-. Wiring for communications should be from drive to drive in a chain, as shown above.

- The termination DIP switches should be On (up) on both ends of the network.
- The shield wires should be connected together and grounded on one end only.

Multi-Drive Parameter Programming

Set the following parameters to enable a multi-drive network. Because the Master could change, the best practice is to set all drives the same.

Multi-VFD Set [ADV-35]: This setting defines the number of drives in the system, including Lead, Lag, Standby, and Jockey. Default= 0 _Single VFD where one VFD controls one pump. MMC mode is available with this selection.
Standby Pumps [ADV-36]: Defines the number of Standby pumps/drives that will be assigned. The maximum entry is equal to the total number of drives less the Lead and less the Jockey (if enabled).
Multi-VFD ID [ADV-37]: This setting is used to assign a unique identification number to each drive in the system. IDs must be sequential without gaps. The Master will only recognize numbers up to the [ADV-35] total. If a Jockey is used, it must be assigned to the highest ID.
VLag Start Freq [ADV-38]: When Lead is running at a higher frequency than [ADV-38] and system pressure is less than Setpoint [SET-21]-2\% for the duration of VLag Start Delay [ADV-39], then Master will command Lag 1 drive to start. If more Lag drives are available, a Lag Run Timer will start. If conditions are still not met, the next Lag drive will be started.
VLag Start Delay [ADV-39]: Sets a delay time to start Lag pump(s) when both frequency and pressure conditions are met. Range from 0 to 600 sec . Default= 10 sec .
VLag Stop Freq [ADV-40]: When Lead is running at a lower frequency than [ADV-40] and system pressure is equal to or greater than Setpoint [SET-21]-2\% for the duration of VLag Stop Delay [ADV-41], then Master will command Lag 1 drive to stop (first start-first stop). If more Lag drives are running, if conditions are met after Lag Run Timer, the next Lag drive will be stopped.
VLag Stop Delay [ADV-41]: Sets delay time to stop Lag pump when both frequency and pressure. Range from 0 to 600 sec . Default= 5 sec .
VLead/Lag ID [ADV-42]: Set this value to the initial role of each drive in the network (Lead, Lag \#, Standby \#, or Jockey). Settings can be changed by the Master during the alternation cycle.

NOTE: During initial setup, if Multi-Pump ID [ADV-37] is set to number greater than 0 , ADV-42 will be automatically set to Lag with that number. Then it can be changed to Standby if the system has Lead-LagStandby setup.
VLag Spd Source [ADV-43]: For each drive, this setting determines whether the drive will use PID mode or Lag Set Frequency when assigned as a Lag.
VLag Set Freq [ADV-44]: Frequency the drive will use if running as a Lag with a range from PID Freq Low Limit [SEE-22] to PID Freq Max Limit [SET-23]. Default= 55.00 Hz .
Alternation [ADV-45]: This setting determines if and how the Lead role will be rotated through the network, either by a set time interval or whenever the Master power is cycled. Default is Disable.

NOTE: If Master power was cycled quicker than next VFD master detection delay or the whole system power is cycled, after system normal power-up it will alternate.
Alternate TMR [ADV-46]: This setting determines the length of time before the Lead alternates if [ADV-45] is set to Timer.
VFD Ready [ADV-47]: For each drive, this setting determines whether or not the drive can be used as the Master. The Skiplt selection removes the drive from the Lead/Lag sequence, but it can be used as a Master.

ADVANCED APPLICATION OPTIONS

Multi-Drive Configurations

COMMUNICATIONS

FE Connect for Cerus X-Drive Mobile Application

The FE Connect app for X-Drive is an intuitive way to wirelessly configure and control your VFD. It provides features such as:

- Simple, application-based setup for quick and easy startup
- Informational dashboard for visual monitoring of system performance
- Mobile control mode for easy Hand mode operation

- In-app troubleshooting with fault time and date logging
- Email system logs directly to FE support

In your mobile device's app store, search for FE Connect. Locate and install the X-Drive specific version.
NOTE: To use the app, you must install and configure an accessory X-Drive FE Connect Bluetooth communication card in the VFD. Refer to "Optional Extension Cards" on page 127.

Setup Bluetooth Connection

After installing the X-Drive Connect app on your device, use the following procedure to connect to a X-Drive:

1. From the Home screen, tap Connect New Product.
2. On the New Product Wizard screen, tap either Scan QR Code Sticker or Enter the Bluetooth Key.
3. If using the scanning tool, center the QR code on the Bluetooth card in the screen.
4. If using the Bluetooth key, press the F2 button on the drive keypad nine times to display the BT Card Name screen. Enter the Key number shown into the app.
5. Enter a Name and Location to identify the drive within the app.
6. Tap Finish \& Connect to complete the connection.

NOTE: If multiple drives are installed in same location, refer to the BT icon in bottom right of keypad to identify the drive in which the app is paired.

Using the Mobile App

Use the following procedure to program an X-Drive that has been paired with the app. Refer to "Navigating the Mobile App" on page 116 for detailed information on each screen.

1. On the My Products screen, tap the name of the desired drive to connect to the device and enter the Dashboard.
2. Tap the MENU button for a list of options to navigate between screens.
3. Tap Setup to change VFD settings.

- For new installation, start commissioning guide by selecting MOTOR APPLICAIION.
- For existing installation, change individual parameters by selecting All Settings.

From here, you will be able to program and verify all drive settings. Refer to "Setting Operating Parameters" on page 50 for more information about settings.

Navigating the Mobile App

My Products Screen

1. Menu Button: takes user to Menu navigation screen. Refer to "Menu Screen" on page 117.
2. Listing of past drives which the app was connected.
3. By selecting the drive's check box, you can remove the drive from the list.
4. Connect button: connect to detected drive within the area.
5. Connect New Product button: use to pair new drive to the mobile app.
6. Demo Mode button: used to test the app before connecting to a drive

Menu Screen

1. List of other screens.
2. Drive ID code that identifies the power and voltage rating.
3. Disconnect button: disconnects the app from the drive.

NOTE: Once a drive is disconnected, the My Products screen appears.

Dashboard Screen

1. Active System Status
2. Active Output Status
3. Analog gauge showing output frequency or feedback value in PID mode.
4. Monitoring values, digital and analog inputs, and relays and analog outputs.
5. Control mode window to force running in app mode

FE Connect for Cerus X-Drive Mobile Application

Setup Screen

1. Commissioning guide to setup parameters
2. Start-up reports: to capture active status and parameters in a pdf.
3. All Settings: provides listing of all parameters that can be individually be changed.
4. Sync Date \& Time: to update drive to match phone
5. Configuration Templates: to create a file with all parameters of the drive, which can be loaded onto another drive via current phone or shared to another phone.

Logs Screen

The log screen shows a list of faults with a time/date stamp.

1. Share Logs button: press to share faults via email or store to phone
2. Setting Changes: sort logs by All, Faults, or Setting Changes
3. Select individual faults for specific data and a troubleshoot guide

Drive Info Screen

1. Provides firmware and hardware information
2. Check for Bluetooth Updates: allows updating Bluetooth option card firmware

Reports Screen

1. View reports for current location
2. Generate New Reports: creates reports with option of including Form 2207 for pumping applications
NOTE: This screen can be viewed when disconnected from the drive.

Pump House

三man

Documentation

QuickStart Guide
X-Drive Manual
BACnet Points
Modbus Registers
Fault Troubleshooting
Franklin Electric AIM Manual 60 Hz
Franklin Electric AIM Manual 50 Hz
Franklin Electric AIM Manual - App
Communication Card Installation Guide
X-Drive FAQ
X-Drive Brochure

Drive Tutorials
Franklin Tech Online 2

We're Here to Help

Monday - Friday 8:00AM to 5:00PM EST

About Screen

1. Features Overview: provides brief description of the app
2. Terms of Use: the legal compliance in using the apps

NOTE: this screen can be viewed when disconnected from the drive.

Documentation Screen

1. List of documents pertinent to product and commissioning
2. Franklin Tech Online: Link to online video tutorial on Franklin Tech Online

NOTE: This screen can be viewed when disconnected from the drive.

Support Screen

Grants direct telephone or email support.
NOTE: This screen can be viewed when disconnected from the drive.

Franklin Electric

X-Drive Connect 0.1.0(5)
(1) Features Overview Terms of Use 2

Modbus Communication

The VFD can be controlled and monitored through the Modbus RTU protocol over an RS-485 connection. Modbus follows a simple client-server model. Server devices perform data read/write requests which are issued from a client device such as a Programmable Logic Controller (PLC) or Building Management System (BMS). Assignable addresses for server devices range from an address of 1 to a theoretical maximum of 247.

As a server device, the VFD communicates all data using only 16 -bit holding registers. Addressing for the registers is partitioned into blocks that are multiples of 100 to group functionally similar data. If the drive is configured to accept commands via remote communications, it can be commanded to start, stop, run at a specified output frequency, target a setpoint in PID control, and reset faults.

For Modbus addresses, refer to "ModBus Commands and Data Addresses" on page 122.

X-Drive Configuration for Modbus

Use the X-Drive's internal COM1 Port to connect to a Modbus network. COM1 can be accessed either through terminals SG+ and SG(1) or through one of the RJ45 connectors (2). RJ45 pins 4 and 5 are connected in parallel with SG+ and SG- and pins 3 and 6 are parallel with SGND and Ground.

The X-Drive can also communicate with a Modbus network through Ethernet if an accessory Ethernet Communication card is installed in the VFD. Refer to "Optional Extension Cards" on
 page 127.

To enable Modbus communications, set the following parameters:

Communication Parameters Setup

- PLC Menu [SET-58]: Use this setting to enable the PLC menu.
- PLC Com Type [PLC-23]: Set to 0_Modbus 485. This enables Modbus on COM1 with the format RTU 8, N, 1. When Modbus is enabled, BACnet communication, and PLC communication are disabled on COM1.
- COM1 Address [Comm-00]: If the AC motor drive is controlled by RS-485 serial communication, the communication address for this drive must be set via this parameter and each AC motor drive's communication address must be different.
- COM1 Speed [Comm-01]: This parameter is for selecting the RS485 communication transmission speed. Set $4.8 \mathrm{~K}, 9.6 \mathrm{~K}, 19.2 \mathrm{~K}, 38.4 \mathrm{~K}, 57.6 \mathrm{~K}$ and 115.2K.
NOTE: If the value is not one of these 6 types, it will be replaced by 9.6 K .
- COM1 Loss [Comm-02]: Sets the action when communication errors occur.
- COM1 Loss Delay [Comm-03]: Setting for communication timeout detection.
- COM1 Protocol [Comm-04]: RS485 Protocol: Data Bits - Parity - Stop Bits - Message Format
- Response Delay [Comm-05]: Duration VFD waits before responding to received communication.
- Main Frequency [Comm-06]: When Auto Speed Ref [SET-07] is set to RS485 Interface, the last frequency command is stored in this parameter. After rebooting from an abnormal turn-off or momentary power loss, the VFD will continue operation with last frequency.

System Parameters Setup

- HOA Mode Source [SET-60]: Set to 2_RS485 Serial. This enables Modbus to switch between Hand and Auto modes.
- Auto Speed Ref [SET-07]: Set to 5_RS485Serial. This enables Modbus to control the speed when in Auto mode.
- Auto Run Cmd [SET-08]: Set to 2_RS485 Serial. This enables Modbus to initiate a Run Command in Auto mode.
- Hand Speed Ref [SET-09]: Set to 1_RS485 Serial. This enables Modbus to control the speed when in Hand mode.
- Hand Run Cmd [SET-10]: Set to 2_RS485Serial. This enables Modbus to initiate a Run Command in Hand mode.

ModBus Commands and Data Addresses

ModBus	Display Name	ModBus	Display Name
8192	Run Command	8728	Reserved
8193	Frequency Command	8729	Counter Overload Time Percentage
8194	Fault Reset	8730	GFF Percentage
8448	Error Code	8731	DC Bus Ripple
8449	Drive Status	8732	PLC Register D1043 Data
8450	Frequency Command Value	8733	Reserved
8451	Output Frequency	8734	User Page Display
8452	Output Current	8735	Output Value of Output Frequency Coefficient Calculation
8453	DC-Bus Voltage	8736	Number of Motor Revolutions While Running
8454	Output Voltage	8737	Operating Position of the Motor
8455	Multi-Step Speed	8738	VFD Cooling Fan Speed
8456	Reserved	8739	Control Mode
8457	Counter Value	8740	Carrier Frequency Status
8458	Power Factor Angle	8741	Reserved
8459	Torque	8742	Drive Status
8460	Motor Speed	8743	Reserved
8461	Reserved	8744	Reserved
8462	Reserved	8745	Power
8463	Output Power	8746	AVI1-PT100
8470	Multi-Function Display	8747	ACI-PT100
8475	Maximum Operating Frequency	8748	Reserved
8479	Decimal Portion of Output Current	8749	Reserved
8704	Output Current	8750	PID Reference Value
8705	Counter Value	8751	PID Offset Value
8706	Output Frequency	8752	PID Output Frequency
8707	DC-Bus Voltage	8753	Hardware ID
8708	Output Voltage	8754	U-phase Current
8709	Power Angle	8755	V-phase Current
8710	Motor Power	8756	W-phase Current
8711	Motor Speed	8759	Aux Analog Input
8712	Torque	8762	Torque \%
8713	Reserved	9729	Digital Input Status
8714	PID Feedback Value	9730	Digital Input Status Continued
8715	AVII Input Value Percentage	9793	Digital Output Status
8716	ACI Input Value Percentage	9825	AVI1 Proportional Value
8717	AVI2 Input Value Percentage	9826	ACI Proportional Value
8718	IGBT Temperature	9827	AVI2 Proportional Value
8719	Ambient Temperature	9835	Expansion Card Al10 Percentage
8720	Digital Input Status	9836	Expansion Card Al11 Percentage
8721	Digital Output Status	9856	A01 \%
8722	Multi-Step Speed Being Executed	9857	A02 \%
8723	CPU Pin Status for Digital Inputs	9889	AFM1 Output Proportional Value
8724	CPU Pin Status for Digital Outputs	9890	AFM2 Output Proportional Value
8725	Reserved	9899	Expansion Card A010 Percentage
8726	Reserved	9900	Expansion Card A011 Percentage
8727	Reserved		

BACnet Communication

The VFD can be controlled and monitored through the BACnet MS/TP protocol over an RS-485 connection. The VFD operates as an MS/TP master device, for which the protocol can support addressing for up to 128 master devices in a single MS/TP network.

BACnet conveys control and monitoring data as a collection of BACnet objects. The X-Drive BACnet protocol supports 3 object types: Device, Analog Value (AV), and Binary Value (BV). The Read Property and Write Property services can be used to interface to these objects. If the drive is configured to accept commands via remote communications, it can be commanded to start, stop, run at a specified output frequency, target a setpoint in PID control, and reset faults.

X-Drive Configuration for BACnet

Use the X-Drive's internal COM1 Port to connect to a BACnet network. COM1 can be accessed either through terminals SG+ and SG(1) or through one of the RJ45 connectors (2). RJ45 pins 4 and 5 are connected in parallel with SG+ and SG- and pins 3 and 6 are parallel with SGND and Ground.

To enable BACnet communications, set the following parameters:

Communication Parameters Setup

- PLC Menu [SET-58]: Use this setting to enable the PLC menu.
- PLC Com Type [PLC-23]: Set to 1_BACnet. This enables BACnet on COM1 with the format RTU 8, N, 1 . When BACnet is enabled, Modbus communication, and PLC communication are disabled on COM1.
- BACnet MAC ID [Comm-24]: This should be set to BACnet's MS/TP station number-default = 10 . Range $=0$ to 127.
- BACnet Speed [Comm-25]: This should be set to the BACnet communication baud rate-default = 38400. Range $=9600,19200,38400$, or 76800 bps.
- Device ID Lo [Comm-26] and Device ID Hi [Comm-27]: The combination of these two parameters is the Device Object Identifier. [Comm-26] is usually set as the unique device number in the trunk. [Comm27] is usually set to the trunk or building floor number. Refer to "BACnet Device ID Setup" on page 124.
- Max Address [Comm-28]: This is the maximum number of Master nodes available in the trunk. Communications will be faster if the setting is equal or close to the actual number of Master devices.
- Password [Comm-29]: Enter the BACnet password. If setup is successful, the keypad will display 8888.

System Parameters Setup

- HOA Mode Source [SET-60]: Set to 2_RS485 Serial. This enables BACnet to switch between Hand and Auto modes.
- Auto Speed Ref [SET-07]: Set to 5_RS485Serial. This enables BACnet to control the speed when in Auto mode.
- Auto Run Cmd [SET-08]: Set to 2_RS485 Serial. This enables BACnet to initiate a Run Command in Auto mode.
- Hand Speed Ref [SET-09]: Set to 1_RS485Serial. This enables BACnet to control the speed when in Hand mode.
- Hand Run Cmd [SET-10]: Set to 2_RS485 Serial. This enables BACnet to initiate a Run Command in Hand mode.

BACnet Device ID Setup

The BACnet Device Object Identifier is the combination of Device ID Lo [Comm-26] and Device ID Hi [Comm-27], used as a unique device number in the trunk. It must be within a range of 0 to 4194303.

The calculation of the BACnet Device ID is [Comm-27] *1000 + [Comm-26].
NOTE: If user sets value outside of range, then device ID value will be set to maximum value, which is 4,194,303.

Parameter Setup:
Device ID Lo [Comm-26]: a unique device number in the trunk. Range is 0 to 999.
Device ID Hi [Comm 27]: set to the trunk or building floor number. Range is 0 to 4194.
For example, to set a Device ID of 789888:

- The lower three digits are Device ID Lo [Comm-26]; therefore, [Comm-26] = 888.
- The upper digits are Device ID Hi [Comm-27]; therefore, [Comm-27] = 789 .

BACnet Objects

Commandable Analog Value Objects

Object Number	R/W	Object Name	Object Description	Unit
AV 000	RW	Reserved	-	-
AV 001	RW	FreqRefValue	Frequency Reference Value	Hz
AV 002 through AV 010	RW	Reserved	-	-
AV 011 through AV 026	RW	Block Transfer	Block transfer mapping 1 to 16	Dependent

Status Analog Value Objects (Read Only)

Object Number	R/W	Object Name	Object Description	Unit
AV 027 through AV 030	R	Reserved	-	-
AV 031	R	Output Frequency	Output Frequency Value	Hz
AV 032 through AV 034	R	Reserved	-	-
AV 035	R	Output Torque	Output Torque	\%
AV 036 through AV 038	R	Reserved	-	-
AV 039	R	Status Word	VFD Status Word from BV 16 through BV 31	-
AV 040	R	Reserved	-	-
AV 041	R	Drive Type Code	Drive Type Code	-
AV 042	R	Warning Code	Warning/Alarm Code	-
AV 043	R	Error Code	Error/Fault Code	-
AV 044	R	Output Current	Output/Motor Current	Amperes
AV 045	R	DC Bus Voltage	DC Bus Voltage	VDC
AV 046	R	Output Voltage	Output Voltage	VAC
AV 047	R	Count Value	Accumulated TRG DI Counter Value	-
AV 048	R	Power Factor	Output Power Factor	-
AV 049	R	Output Power	Output Power	kW
AV 050	R	IGBT Temperature	IGBT Temperature	${ }^{\circ} \mathrm{C}$
AV 051	R	Caps Temperature	DC Bus Capacitors Temperature	${ }^{\circ} \mathrm{C}$
AV 052	R	Carrier Frequency	Actual Carrier Frequency	kHz
AV 053	R	PID F/B Value	PID Feedback Value	\%
AV 054	R	Overload Rate	Overload Value	\%
AV 055	R	GND Fault Level	Ground Fault Trip Level	\%
AV 056	R	DC Bus Ripples	DC Bus Ripples Amplitude	Volts
AV 057	R	Fan Speed	VFD Cooling Fan Speed	\%

COMMUNICATIONS

Object Number	R/W	Object Name	Object Description	Unit
AV 058	R	Motor Speed	Actual Motor Speed	RPM
AV 059	R	kWh	Kilowatts per hour	kWh
AV 060	R	Step Frequency	Step Frequency ID number	-
AV 061	R	AVII Input Value	AVII Analog Input Reading	$\%$
AV 062	R	ACI Input Value	ACI Analog Input Reading	$\%$
AV 063	R	AVI2 Input Value	AVI2 Analog Input Reading	$\%$
AV 064	R	Digital IN Status	Digital Inputs Status [I0-46]	-
AV 065	R	Digital OUT Status	Digital Outputs Status [IO-58]	-
AV 066	R	CPU DI Pin Status	CPU Pins from Digital INs Status	-
AV 067	R	CPU DO Pin Status	CPU Pins to Digital OUTs Status	-
AV 068	R	PLC D1043 Status	PLC Register D1043 Status	-
AV 070	R	ULD Recover Counter	SET-46 ULD Recover Counter Display	-
AV 071	R	HLD Recover Counter	SET-52 HLD Recover Counter Display	-

Commandable Binary Value Objects

Object Number	R/W	Object Name	Object Description
BV 000	RW	Freq Active CMD	$\begin{aligned} & \text { 0_Frq CMD }=0 \mathrm{~Hz} \\ & \text { 1_Frq CMD }=\text { FreqRefValue } \end{aligned}$
BV 001	RW	FWD/REV CMD	0 Forward 1_Reverse
BV 002	RW	Reserved	-
BV 003	RW	Stop CMD	$\begin{aligned} & \text { 0_None } \\ & \text { 1_Stop (Decelerate to 0Hz) } \end{aligned}$
BV 004	RW	Hold SPD	$\begin{aligned} & \text { 0_None } \\ & \text { 1_Stay at Current Frequency } \end{aligned}$
BV 005	RW	Reserved	-
BV 006	RW	Q-Stop CMD	0_None 1_Quick Stop
BV 007	RW	Power Out CMD	0_Power OFF (Coast to Stop) 1_Power ON (Run)
BV 008 through BV 014	RW	Reserved	-
BV 015	RW	Reset	0 None 1_Reset Fault

BACnet Communication

Status Binary Value Objects

Object Number	R/W	Object Name	Object Description
BV 016	R	At CMD Freq	$\begin{aligned} & \text { 0_Out Frq ? CMD } \\ & \text { Frq1_Out Frq = CMD Frq } \end{aligned}$
BV 017	R	Direction	0_Forward 1_Reverse
BV 018	R	Warning	0_None 1_Warning Active
BV 019	R	Error/Fault	0_None 1_Error/Fault Active
BV 020	R	ULD Fault	$\begin{aligned} & \text { 0_No Fault } \\ & \text { 1_Under Load Triggered (ULD) } \end{aligned}$
BV 021	R	HLD Fault	0_No Fault 1_High Load Triggered (HLD)
BV 022	R	Q-Stop Mode	0_None 1_Q-Stop Active
BV 023	R	Power OUT	0_Power OUT Off 1_Power OUT On (Run)
BV 022	R	Broken Pipe	0_No Fault 1_Broken Pipe Fault
BV 023	R	Pipe Leak	0_No Fault 1_Pipe Leak Fault
BV 024	R	Signal Loss	0_No Fault 1_Signal Loss Fault
BV 025	R	Overpressure	0_No Fault 1_-Overpressure Fault
BV 026	R	Damper Fault	0_No Fault 1_Damper Fault
BV 027	R	No-Flow Fault	$\begin{aligned} & \text { 0_No Fault } \\ & \text { 1_No-Flow Fault } \end{aligned}$
BV 028	R	Fireman's Override	$\begin{aligned} & \text { 0_Normal Mode } \\ & \text { 1_Fireman's Override Mode } \end{aligned}$
BV 029	R	Shutdown Mode	0_Normal Mode 1_Shutdown Mode
BV 030	R	Pipe Fill Mode	0_Normal Mode 1_Pipe Fill Mode
BV 031	R	Sleep Mode	0_Normal Mode 1_Sleep Mode
BV 032	R	HOA in OFF	0_ HOA not in OFF 1_HOA is in OFF
BV 033	R	HOA in Auto	0_HOA not in Auto 1_HOA is in Auto
BV 034	R	HOA in Hand	0_HOA not in Hand 1_HOA is in Hand
BV 035	R	Stopped by AI Level	0_Normal Control 1_Stopped by Analog Input Level
BV 036	R	Frequency Limit by AI	0_Normal Freq. Limit 1_Freq. Limit by Analog Input Level
BV 037 through BV 039	RW	Reserved	-

ACCESSORIES

Optional Extension Cards

AWARNING

4
 Contact with hazardous voltage could result in death or serious injury.

- Disconnect and lock out all power before installing or servicing equipment.
- Use extreme caution and take necessary safety measures if opening the cover at any time while drive is powered.
A selection of accessory extension cards is available to add additional functionality to the X-Drive, including:
10000004840 X-Drive FE Connect Communication Card: This card adds Bluetooth communication to the drive, providing the ability to program, control, and monitor the VFD using the X-Drive FE Connect mobile application. When the card is installed, and the drive is powered on, parameter Com Card ID [Comm-30] should identify 13_FELEBT Card. Refer to "FE Connect for Cerus X-Drive Mobile Application" on page 115 to connect the mobile app to the drive.

CMC-EIP01 Ethernet Communication Card: This card support Ethernet IP and Modbus TCP protocols. To install the card into the VFD, refer to "Extension Card Installation" on page 129 and "Setup Optional Ethernet Communication Card" on page 133. Refer to "Modbus Communication" on page 120 for additional parameters and configuration information.
Once configured, the LED Indicators give the status of the network, parameters, and VFD power:

LED	Light Status	Indication	Required Action
NS	Green \& red alternate	Network self-test mode	None
	Solid green	CIP connection established	None
	Blinking green	No CIP connection at power-on	None
	Solid red	IP duplicate / conflict	Check IP Settings
	Blinking red	COMMS loss / Time-out	Check COMMS setting
	OFF	No connection to network	Check network connection
MS	Green \& red alternate	Drive in self-test mode	None
	Solid green	Parameters are set	None
	Blinking green	Parameters are not yet set	Finish setting parameters
	Solid red	VFD hardware failure	Check with FE support
	Blinking red	VFD/COMMS card error	Check parameters setting
	OFF	No power	Check if VFD is powered
Power	ON	Power is normal	None
	OFF	No power	Check if VFD is powerd
Link	ON	Transmit/receive is normal	None
	OFF	No connection to network	Check network connection

Optional Extension Cards

EMC-D42A Extension DC I/O Card: This card adds four Digital Inputs, MI10-M113 with COM common terminal and two polarity insensitive Transistor Outputs with MXM common terminal.

MI10-MII3 inputs functionality is programmable through parameters [0ption-00 to 03]. Ratings are the same as VFD inputs MII-MI8. The COM terminal should be connected the same way as VFD COM terminal. For default VFD DIs configuration it should be connected to +24V terminal.

M010-M011 outputs functionality is programmable through [0ption-00 to 03]. Ratings are 48 VDC at 50 mA maximum. The MXM terminal should be connected to the common terminal of external power source and M010 and M011 to the load (Example: PL pilot light on the diagram).

EMC-611A Extension AC Input Card: This card adds six Digital Inputs, M110-M115 with AC common terminal (Neutral).
MI10-MI13 inputs functionality is programmable through parameters [Option-00 to 05].
Ratings are $100-130 \mathrm{VAC}, 47-63 \mathrm{~Hz}, 27 \mathrm{k}$ impedance. Response time for ON is 10 ms and for OFF is 20 ms .

EMC-R6AA Extension Relay Card: This card adds six Relay Outputs, R10-R15 with SPST (single-pole singlethrow) form A (N.O.) contacts.

R10-R15 relay functionality is programmable through parameters [Option-06 to 16].
Contact ratings for:

- Resistive load 3A at 250VAC and 5A at 30VDC
- Inductive load (COS 0.4) 1.2A at 250VAC and 2A at 30VDC

Extension Card Installation

AWARNING

Risk of bodily injury or damage to drive or other equipment. Contact with hazardous voltage could result in death or serious injury.

- Disconnect and lock out all power before installing or servicing equipment.
- Capacitors inside the drive can still hold lethal voltage even after power has been disconnected. ALWAYS check if DC bus charge LED is off and DC voltage on the terminals $D C(+1)$ and $D C(-)$ is less than 30VDC before working on VFD wiring. The DC bus capacitors may hold high-voltage charge for several minutes after the VFD power is disconnected.
- Extension cards cannot be replaced with power applied. Damage to VFD may occur.

Use the follow procedure to install an optional extension card:

1. Remove power from the drive and wait until voltage has safely discharged from the $D C$ bus.
2. Remove the digital keypad.
3. Remove the front cover as shown.

Frame A through C

Frame D

Frame E

Frame F

Frame G

Frame H

Optional Extension Cards

4. Locate slot for card installation.
a. RJ45 socket for digital keypad

- For a CMC-EIP01 Ethernet Communication Card, connect the communication cable to this port.
b. Communications card slot
- Bluetooth
- Ethernet
c. Input/Output extension card slot
d. Not currently used

5. Align holes in card over the positioning pins.
6. Press down on the card until retaining clips snap into place.

7. When clips are secure, install retaining screws and tighten to a torque of $6-8 \mathrm{~kg}-\mathrm{cm} / 5.2-7 \mathrm{lb}-\mathrm{in} . / .59-.79 \mathrm{Nm}$.

Once an extension card has been installed, it must be activated to be recognized by the system. The activation procedure differs depending on the type of card. For more information, refer to "Optional Extension Cards" on page 127.

Setup Optional Ethernet Communication Card

Install the card following the instructions in "Extension Card Installation" on page 129.

1. Verify card detection.

- Check Com Card ID [Comm-30] to determine whether a Communications Card has been installed and recognized by the drive. A value of № Com Card indicates that a card has not been detected.
- To activate the card in the drive, set Comm Card [Comm-55] to 2 h (bit 1 on). This will detect the installed card and automatically change [Comm-30] to Ethernet/IP.

2. Download card values to the drive.

- Set MBus Card Reset [Comm-52] to 1_Enable. This populates default values from the card into the appropriate drive parameters. For example:
- IP Address: 192.168.1.5 to [Comm-38 through 41]
- Address Mask: 255.255.255.0 to [Comm-42 through 45]
- Gateway Address: 192.168.1.1 to [Comm-46 through 49]

NOTE: When complete, [[omm-52] will automatically return to 0_Disable.
3. Adjust settings as required for the network and upload to card.

- Use [Comm-38 through 49] to set each address segment.
- When complete, set MBus TCP Config [Comm-53] to 2_I-net Par On. This loads the new addresses to the card, enabling communication with the network.

Optional Extension Cards

MAINTENANCE

Troubleshooting

Error Messages: When the drive detects a fault or warning, an error message displays on the screen showing the current problem condition. In some cases the fault can be cleared by pressing the Stop/Reset button.

```
Stop KiK
Warming
    OcA
oc at accel
```

Fault Records: In addition, the drive records up to 30 of the most recent faults. These can be accessed by pressing the F3 key. Use the arrow keys to scroll through the list. For more information about a selected fault, press the Enter key to display details about the occurrence, including date, time, output frequency, output current, and other related data.

NOTE: Fault records can also be located through [PROT-51 to 56], or by pressing Menu/Back/Down/ Fault.

Using the displayed fault title, refer to the following table for troubleshooting details.

Fault Record 1
 -W phase lacked
 oc at accel
 over load

Fault Record

4 W phase lacked
oc at accel
over load

Diagnostic Fault Codes

Fault Display		Description
$\begin{aligned} & \text { ACI loss } \\ & \text { ACE (48) } \end{aligned}$	Analog current input loss, including all $4-20 \mathrm{~mA}$ and 2-10V signals.	
Action level	When the analog input is below Loss Level (only detects 4-20 mA and 2-V inputs).	
Action time	After Loss Delay	
Related parameters	$[10-01]$ ACI Loss Trip (0_Disable, 1_Hold Speed, 2_Decel to Stop, 3_Trip Stop, 4_At AI Loss Freq)$[10-02]$ ACI Loss Level$[10-03]$ ACI Loss Delay	
Reset method	Auto	When [10-01] is set to Hold or Decel of At AI Loss Frec fault clears.
	Manually	When [10-01] is set to Trip, action is Fault and must ber
Reset condition	Immediately	
Recorded W	When [10-01] is set to Trip, Fault is recorded.	
Cause		Corrective Action
- Loose or broken connection - Sensor failure - Drive failure		- Check the ACl wiring - Check if the ACI signal is less than 4mA (2V)

MAINTENANCE
Troubleshooting

MAINTENANCE
Troubleshooting

Fault Display	Description
CAN bus off CbFE (104) CFrE (107)	CANopen bus off error CANopen memory error
Action and Reset	
Action level	- When CANopen card is not installed or communication errors exist - If control board firmware is updated, the FRAM internal data is not changed and fault occurs
Action time	Immediately
Reset method M	Manually
Reset condition Cy	Cycle the power
Recorded Ye	Yes
Cause	Corrective Action
- CANopen card not installed - CANopen speed incorrect - EMI Interference - Communication cable broken - Firmware update	- Check Comm card installation - Check communications settings - Check wiring and grounding for possible interference - Make sure communication circuit is wired in series - For CFrE error, reset parameters and station address
Fault Display	Description
cc HW error HdO (36)	Current clamp hardware protection
Action and Reset	
Action level \quad Ha	Hardware detection
Action time \quad Im	Immediately
Reset method \quad Cy	Cycle the power
Recorded Ye	Yes
Cause	Corrective Action
- Hardware failure	- If condition still exists after power restart, please call Technical Support.
Fault Display	Description
CPU Trap $\mathbf{0}$ error CPU $\operatorname{TRAP}(93)$	CPU instruction error
(Action and Reset	
Action level \quad Ha	Hardware detection
Action time \quad Im	Immediately
Reset method	Cycle the power
Recorded \quad Ye	Yes
Cause	Corrective Action
- Hardware failure - EMI Interference - CPU in infinite loop	- Check wiring and grounding for possible interference - If error cannot be reset, please call Technical Support

MAINTENANCE
Troubleshooting

Fault Display	Description	
External Fault EF (49)	Drive stops based on signal from an external device.	
Action and Reset		
Action level	When a multi-function input terminal (MII to MI8) is set to Ext Trip and the contact is closed, the AC motor drive stops output based on [10-35] setting.	
Action time	Immediately	
Related parameters	[I0-35] Ext Trip Mode; [I0-21 to 28] 10_Ext Trip Terminal	
Reset method	Manually	
Reset condition	After external error has been corrected.	
Recorded	Yes	
Cause		Corrective Action
- Multi-function input terminal that is set to external fault has been activated.		- Deactivate input terminal with function set to external fault - Check Normally Open / Normally Closed settings IO-46 DI NO/NC
Fault Display	Description	
FAN PWR lost FANL (91)	Lost power to drive cooling fan.	
Action and Reset		
Action level	Hardware detection	
Action time	Immediately	
Reset method	Attach fan and cycle power	
Reset condition	N/A	
Recorded	Yes	
Cause		Corrective Action
- Fan not connected - Broken fan wire - Damaged fan		- Check that fan connector has correctly mated with drive connection - Check wires going to fan. If broken, replace fan - Check fan works by power cycling the drive. If fan does not run for 5 seconds at initial turn-on, replace fan
Fault Display	Description	
Force Stop FStp (90)	Keypad forces PLC to Stop	
Action and Reset		
Action level	When [SET-61] = 1, STOP button on the keypad is valid. When giving the STOP command during the PLC operation, FStp fault will active.	
Action time	Immediately	
Related parameters	[SET-61]	
Reset method	Manually	
Reset condition	Immediately reset	
Recorded	Yes	
Cause		Corrective Action
- [SET-61] = 1: keypad STOP button is valid - Press STOP button during PLC operation		- Check if it is necessary to set SET-61 $=0$, so the keypad STOP button is invalid - Verify the timing of STOP function

MAINTENANCE
Troubleshooting

MAINTENANCE
Troubleshooting

Fault Display	Description
Ics sensor Err cd3 (35) W-p	rent detection error when power is ON
Action and Reset	
Action level \quad Hard	Hardware detection
Action time Imm	Immediately
Reset method Cycle	Cycle the power
Recorded Yes	Yes
Cause	Corrective Action
- Hardware failure	- If error still exists after power cycle, please call Technical Support.
Fault Display	Description
IGBT over heat IGBT $\mathrm{OH1}(16)$	IGBT temperature exceeds the protection level
Action and Reset	
Action level \quad Whe	When IGBT is higher than the PROT-18 overheating protection level, oH1 error occurs instead of oH1 warning.
Action time 100 ms	100 ms
Related parameters [PRO	[PROT-18] OH Warning and [PROT-45] Fan Control
Reset method Manu	Manually or Automatically if in Auto mode and Auto Restart is enabled.
Reset condition IGBT	IGBT temperature is $10^{\circ} \mathrm{C}$ below error level.
Recorded Yes	Yes
Cause	Corrective Action
- Ambient temperature too high - VFD size does not match load - Direct sunlight - Obstruction of flow	- Ensure that the ambient temperature falls within the specified temperature range. - Make sure heat sink is not obstructed. Check if the fan is operating - Check if there is enough ventilation clearance for the drive. - Reduce load. - Replace drive with a larger capacity model. - Remove from direct sunlight.
Fault Display	Description
InrCom Time Out ictE (111) Inter	Internal communication time-out
Action and Reset	
Action level \quad Whe	When internal communication between follower and master is abnormal
Action time Imm	Immediately
Reset method Auto	Automatically
Reset condition Whe	When communication is re-established
Recorded Yes	Yes
Cause	Corrective Action
- EMI Interference - Communication cable broken	- Check Comm card installation - Check communications settings - Check wiring and grounding for possible interference

Fault Display		Description
Internal BT CardiBTc (181)	Bluetooth card error	
Action and Reset		
Action level	Hardware detection	
Action time	Immediately	
Reset method	Manually	
Related parameters	[Comm-30] Comm Card ID	
Cause		Corrective Action
- Improper card installation - Card ID not set - Hardware failure		- Check card installation - Verify [Comm-30] setting - Replace card
Fault Display	Description	
Lv at accel LvA (11)	DC bus low voltage during acceleration	
Action and Reset		
Action level	DC bus voltage is lower than [PROT-03] LV Level during acceleration	
Action time	Immediately	
Related parameters	[PROT-03] LV Level	
Reset method	Manually or Automatically if in Auto mode and Auto Restart is enabled	
Reset condition	Reset when DC bus voltage is higher than PROT-03 + 30 V (Frame A-D) / 40 V (Frame E and below)	
Recorded	Yes	
Cause		Corrective Action
- Power voltage changes - Load is too large - Improper wiring at +1 and +2 - Generator voltage dips		- Check if the input voltage is normal - Check for possible sudden load - Adjust setting of [PROT-03] - Check DC reactor connection - If powered by a generator, increase the throttle - If powered by a generator, replace generator with large one
Fault Display		Description
Lv at decel Lvd (12)	DC bus low voltage during deceleration	
Action and Reset		
Action level	DC bus voltage is lower than [PROT-03] LV Level during deceleration	
Action time	Immediately	
Related parameters	[PROT-03] LV Level	
Reset method	Manually or Automatically if in Auto mode and Auto Restart is enabled	
Reset condition	Reset when DC bus voltage is higher than PROT-03 + 30 V (Frame A-D) / 40 V (Frame E and below)	
Recorded	Yes	
Cause		Corrective Action
- Power-off - Power voltage changes - Start up the motor with - Sudden load - DC bus	arge capacity	- Improve power supply condition - Adjust voltage to the power range of the drive - Check the power system. Increase the capacity of power equipment - Reduce the load and increase the drive capacity - Install DC reactor

MAINTENANCE
Troubleshooting

Fault Display	Description	
Lv at normal SPD Lvn (13)	DC bus low voltage at constant speed	
Action and Reset		
Action level	DC bus voltage is lower than [PROT-03] LV Level at constant speed	
Action time	Immediately	
Related parameters	[PROT-03] LV Level	
Reset method	Manually or Automatically if in Auto mode and Auto Restart is enabled	
Reset condition	Reset when DC bus voltage is higher than PROT-03 + 30 V ((rame A-D) / 40 V (Frame E and below)	
Recorded	Yes	
Cause		Corrective Action
- Power voltage changes - Sudden load changes - Improper wiring at +1 and		- Check if the input voltage is normal - Check for possible sudden load - Adjust setting of [PROT-03] - Check DC reactor connection - If powered by a generator, increase the throttle. - If powered by a generator, replace generator with large one
Fault Display	Description	
$\begin{aligned} & \text { Lv at Stop } \\ & \text { LvS (14) } \end{aligned}$	DC bus low voltage at stop	
Action and Reset		
Action level	DC bus voltage is lower than [PROT-03] LV Level at constant speed	
Action time	Immediately	
Related parameters	[PROT-03] LV Level	
Reset method	Manually or Automatically if in Auto mode and Auto Restart is enabled and depending on voltage recovery level	
Reset condition	Voltage recovery +500 ms	
Recorded	Yes	
Cause		Corrective Action
- Incorrect drive model - Power voltage change - Hardware failure		- Check if the input voltage is normal - Check for possible sudden load - Adjust setting of [PROT-03] - Check DC reactor connection - Cycle the power. If error still exists, please call Technical Support. - If powered by a generator, increase the throttle. - If powered by a generator, replace generator with large one
Fault Display	Description	
MC Fault ryF (64)	Electric valve switch error when executing Soft Start	
Action and Reset		
Action level	Hardware detection (Frame D and above)	
Action time	Immediately	
Reset method	Manually	
Reset condition	Reset when the electric value switch is correctly closed	
Recorded	Yes	
Cause		Corrective Action
- The input power is abnor - Malfunction caused by i - Hardware failure	mal terference	- Check if the power is shut down during the drive operation - Check if the three-phase input power is normal - Verify the wiring/grounding of the main circuit to prevent interference - Cycle the power after checking the power. If ryF error still exists, call Technical support

MAINTENANCE
Troubleshooting

Fault Display	Description
M-VFD Wrong Ver Wrong so MVWV (184) master.	Wrong software version of drive operating Multi-VFD. Software version of follower (this drive) is different from the master.
Action and Reset	
Action level $[$ VFD-49] ter, and 2	[VFD-49] different than master drive. To identify master drive, set SET-58 to 23 Commu Role then $0=$ No Role, $1=$ Master, and $2=$ Follower.
Action time Immediately	Immediately
Related parameters [VFD-49]	[VFD-49]
Reset method \quad Reprogram	Reprogram drive
Reset condition Immediately	Immediately
Recorded Yes	Yes
Cause	Corrective Action
- Drive has different firmware VFD-49 than master.	- Reprogram drive with same firmware as master. To identify master drive, set SET-58 to 23 Commu Role then 0=No Role, 1=Master, and 2=Follower. - Replace drive with one that has matching firmware. - Remove drive from network and operate independent.
Fault Display	Description
$\begin{array}{l}\text { No Flow(1) } \\ \text { NOFL }\end{array}$ Flow switc	Flow switch has detected no movement of fluid.
Action and Reset	
Action level Multi-func duration o Sleep whe	Multi-function Input set to No Flow function is activated.Detection occurs after motor runs above min frequency for duration of Prime Time [I0-39] and above No-Flow Freq [IO-40]. No-Flow Mode [IO-38] sets operation as Trip or Sleep where additional condition of No-Flow [IO-38] has to be met to incur sleep mode.
Action time \quad Once dete	Once detection occurs, MI has to be active for 5 secs.
Related parameters $\quad[10-38]$ th	[I0-38] through [I0-40]; [10-20] through [10-28]; [10-46]
Reset method Manually	Manually
Reset condition \quad MI become	MI becomes deactivated
Recorded \quad Yes	Yes
Cause	Corrective Action
- No water (dry well) - No-flow switch is Normally Closed (closed when water is moving) - Nuisance tripping - Water flow is too low - Pump has not finished filling pipe with water	- Refill cistern or wait for well to fill with water - Change IO-46 DI NO/NC for designated input to NC. - Review installation instructions with No-Flow Switch which include installing on long straight pipes (no turns) and orientation (horizontal). - Calibrate flow switch - Increase Prime Time

Fault Display	Description
$\mathbf{O c}$ at accel OCA (1)\quad Output curr	nt exceeds 2.4 times of rated current during acceleration
Action and Reset	
Action level 240% of rat	240\% of rated current
Action time Immediately	Immediately
Related parameters [ADV-06],	[ADV-06], [PROT-07], [PROT-39], [PROT-42], [MOTOR-05], [MOTOR-17]
Reset method Manually	Manually
Reset condition \quad Reset in 5 s	Reset in 5 sec after the fault is cleared
Recorded Yes	Yes
Cause	Corrective Action
- Acceleration time is too short - Short circuit at motor output due to poor insulation wiring - Check for possible burnout or aging insulation of the motor - The load is too large. - Impulsive change of the load - Use special motor or motor with larger capacity than the drive - Use ON/OFF controller of an electromagnetic contactor at the output (U/V/W) of the drive - V/F curve setting error - Torque compensation is too large - Malfunction caused by interference - The motor starts when in free run - Improper parameter settings for the speed tracking function (including restart after momentary power loss and restart after fault) - Incorrect combination of control mode and used motor - The length of motor cable is too long - Hardware failure - Check if the setting for stall prevention is correct	- Increase the acceleration time - Increase the acceleration time of S curve - Set auto-acceleration and auto-deceleration parameter [ADV-06] - Set over-current stall prevention function [PROT-07] - Replace the drive with a larger capacity model. - Check the motor cable and remove causes of the short circuits, or replace the cable before turning on the power. - Check the motor insulation value with megger. Replace the motor if the insulation is poor. - Check if the output current during the whole working process exceeds the AC motor drive's rated current. If yes, replace the AC motor drive with a larger capacity model. - Reduce the load or increase the capacity of $A C$ motor drive. - Check the motor capacity (the rated current on the motor's nameplate should be less than rated current of the drive) - Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage. - Adjust V/F curve setting and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage. - Adjust the torque compensation (refer to [MOTOR-17] torque compensation gain) until the output current reduces and the motor does not stall. - Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. - Enable the speed tracking during start-up of [PROT-42]. - Correct the parameter settings for speed tracking. - Start the speed tracking function. - Adjust the maximum current for [PROT-39] speed search tracking. - Check the settings for [MOTOR-05] control mode - Increase AC motor drive's capacity. Install AC reactor(s) on the output side (U/V/W). - The ocA occurs due to short circuit or ground fault at the output side of the drive. Check for possible short circuits between terminals with the electric meter: B1 corresponds to U, V and W; DCcorresponds to U, V and W; corresponds to U , V and W. If short circuit occur, call Technical Support. - Set the stall prevention to the proper value.

Fault Display	Description
$\mathbf{O c}$ at decel Output curr ocd (2)	nt exceeds 2.4 times of rated current during deceleration.
Action and Reset	
Action level 240% of rat	240\% of rated current
Action time \quad Immediatel	Immediately
Related parameters [ADV-06], PR	[ADV-06], [PROT-07], [MOTOR-17]
Reset method Manually	Manually
Reset condition \quad Reset in 5 s	Reset in 5 sec after the fault is cleared
Recorded \quad Yes	Yes
Cause	Corrective Action
- Deceleration time too short - Check if the mechanical brake of the motor activates too early - Short-circuit at motor output due to poor insulation wiring - Check for possible burnout or aging insulation of the motor - The load is too large - Impulsive change of the load - Use special motor or motor with larger capacity than the drive - Use ON/OFF controller of an electromagnetic contactor at the output ($\mathrm{U} / \mathrm{V} / \mathrm{W}$) of the drive - V/F curve setting error - Torque compensation is too large - Malfunction caused by interference - The length of motor cable is too long - Hardware error - Check if the setting of stall prevention is correct	- Increase the deceleration time - Increase the deceleration time of S-curve - Set auto-acceleration and auto-deceleration parameter [ADV-06] - Set over-current stall prevention function [PROT-07] - Replace the drive with a larger capacity model - Check the action timing of the mechanical brake - Check the motor cable and remove causes of the short circuits, or replace the cable before turning on the power. - Check the motor insulation value with megger. Replace the motor if the insulation is poor. - Check if the output current during the whole working process exceeds the AC motor drive's rated current. If yes, replace the AC motor drive with a larger capacity model. - Reduce the load or increase the capacity of AC motor drive. - Check the motor capacity (the rated current on the motor's nameplate should the rated current of the drive) - Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage. - Adjust V / F curve settings and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage. - Adjust the torque compensation (refer to [MOTOR-17] torque compensation gain) until the output current reduces and the motor does not stall. - Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. - Increase AC motor drive's capacity Install AC reactor(s) on the output side (U/V/W) - The ocd occurs due to short circuit or ground fault at the output side of the drive. - Check for possible short circuits between terminals with the electric meter: B 1 corresponds to U , V and W; DC- corresponds to U, V and W; Earth Ground corresponds to U, V and W. If short circuits occur, call Technical Support. - Set the stall prevention to the proper value.

Fault Display	Description	
oc at normal SPD ocn (3)	Output current exceeds 2.4 times of the rated current during constant speed.	
Action and Reset		
Action level	240\% of rated current	
Action time	Immediately	
Reset method	Manually	
Reset condition	Reset in 5 sec after the fault is cleared	
Recorded	Yes	
Cause		- Check the motor cable and remove causes of the short circuits, or replace the cable before turning on the power. - Troubleshoot the motor shaft lock. Check the motor insulation value with megger. Replace the motor if the insulation is poor. - Reduce the load or increase the capacity of AC motor drive. - Check motor capacity (the rated current on the motor's nameplate should ? the rated current of the drive) - Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage. - Adjust V / F curve settings and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage. - Adjust over-torque offset value (Refer to [MOTOR-17] torque compensation gain), until the output current is reduced and not motor stall. - Adjust the torque compensation (refer to [MOTOR-17] torque compensation gain) until the output current reduces and the motor does not stall. - Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. - Increase the AC motor drive's capacity. Install AC reactor(s) on the output side (U/V/W). - The ocn occurs due to short circuit or ground fault at the output side of the drive. Check for possible short circuit between terminals with the electric meter: Bl corresponds to U, V and W ; DC- corresponds to U, V, and W ; Earth Ground corresponds to U, V, and W . - If short circuits occur, call Technical Support.
- Short-circuit at motor output due to poor insulation wiring - Check for possible shaft lock, burnout or aging insulation of the motor - Impulsive change of the load - Use special motor or motor with larger capacity than the drive - Use ON/OFF controller of an electromagnetic contactor at the output (U/V/W) of the drive - V/F curve setting error - Over-torque offset value too high - Torque compensation is too large. - Malfunction caused by interference - The length of motor cable is too long - Hardware failure		
Fault Display	Description	
oc at stop OcS (6)	Over-current or hardware failure in current detection at stop. Cycle the power after ocS occurs. If the hardware failure occurs, the display shows $\mathrm{cd1}$, cd2 or cd3.	
Action and Reset		
Action level	240\% of rated current	
Action time	Immediately	
Reset method	Manually	
Reset condition	Reset in 5 sec after the fault is cleared	
Recorded	Yes	
Cause		Corrective Action - Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference. - Check if other error code such as cd1-cd3 occur after cycling the power. If yes, contact technical support.
- Malfunction cause - Hardware failure	terference	

MAINTENANCE
Troubleshooting

Fault Display		Description
oc HW error	oc hardware protection error when power is ON	
Action and Reset		
Action level	Hardware detection	
Action time	Hd1 acts immediately when the drive detects the fault	
Reset method	Power-off	
Reset condition	N/A	
Recorded	Yes	
Cause		Corrective Action
- Hardware failure		- If condition still exists after power cycle, please call Technical Support
Fault Display	Description	
occ HW error Hd3 (39)	Protection error of occ IGBT short-circuit detection when power is ON	
Action and Reset		
Action level	Hardware detection	
Action time	Hd3 acts immediately when the drive detects the fault	
Reset method	Power-off	
Reset condition	N/A	
Recorded	Yes	
Cause		Corrective Action
- Hardware failure		- If condition still exists after power cycle, please call Technical Support

Fault Display	Description	
ov at accel ovA (7)	DC bus over-voltage during acceleration. When ovA occurs, the drive closes the gate of the output, the motor runs freely, and the display shows an ovA error.	
Action and Reset		
Action level	230V models: 410 VDC 460V models: 820 VDC 575V models: 1116 VDC 690 V models: 1318 VDC	
Action time	Immediately act when DC bus voltage is higher than the level	
Reset method	Manually	
Reset condition	Reset only when DC voltage is lower than 90\% of the over-voltage level	
Recorded	Yes	
Cause		Corrective Action
- Acceleration is too - The setting for stal smaller than no-load - Power voltage is to - ON/OFF switch actio capacitor in the sam - Regenerative volta - Acceleration time is - Motor ground fault - Incorrect wiring of brake unit - Malfunction caused	ntion level is ent phase-in wer system motor inertia hort resistor or erference	- Decrease the acceleration time. Use brake unit or DC bus. Replace the drive with a larger capacity model. - The setting for stall prevention level should be larger than no-load current - Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. - If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor. - Use over-voltage stall prevention function [PROT-04]. Use auto-acceleration and auto-deceleration setting [ADV-06]. Use a brake unit or DC bus - Check if the over-voltage warning occurs after acceleration stops. When the warning occurs, do the following: - Increase the acceleration time - Set [PROT-04] over-voltage stall prevention - Increase setting value for [VFD-26] S-curve acceleration arrival time 2 - The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. Troubleshoot the ground fault. - Check the wiring of brake resistor and brake unit. - Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.

Fault Display	Description
ov at decel DC bus over- ovd (8)	DC bus over-voltage during deceleration. When ovd occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ovd error.
Action and Reset	
Action level 230 V models 560 V models 690 V models	230V models: 410 VDC 460V models: 820 VDC 575V models: 1116 VDC 690V models: 1318 VDC
Action time \quad Immediately	Immediately act when DC bus voltage is higher than the level
Related parameters [SET-12], [VF	[SET-12], [VFD-22], [VFD-24], [SET-55], [PROT-04], ADV-06], [VFD-37]
Reset method Manually	Manually
Reset condition Reset only w	Reset only when DC bus voltage is lower than 90\% of the over-voltage level
Recorded Yes	Yes
Cause	Corrective Action
- Deceleration time is too short, causing too large regenerative energy of the load - The setting for stall prevention level is smaller than no-load current - Power voltage is too high - ON/OFF switch action of phase-in capacitor in the same power system - Motor ground fault - Incorrect wiring of brake resistor or brake unit - Malfunction caused by interference	- Increase the setting value of [SET-12], [VFD-22], [VFD-24], and [SET-55] (deceleration time) - Connect brake resistor, brake unit or DC bus on the drive. - Reduce the brake frequency. - Replace the drive with a larger capacity model. - Use S-curve acceleration/deceleration. - Use over-voltage stall prevention [PROT-04] - Use auto-acceleration and auto-deceleration [ADV-06] - Adjust braking level [VFD-37] or the bolt position of the brake unit). - The setting for stall prevention level should be larger than no-load current - Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. - If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor. - The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. Troubleshoot the ground fault. - Check the wiring of brake resistor or brake unit. - Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.

Fault Display	Description
ov at normal SPD ovn (9) DC bus over- motor runs fr	DC bus over-voltage at constant speed. When ovn occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ovn error.
Action and Reset	
Action level 230 V models 460 V models 575 V models 690 V models	230V models: 410 VDC 460V models: 820 VDC 575V models: 1116 VDC 690V models: 1318 VDC
Action time \quad Immediately	Immediately act when DC bus voltage is higher than the level
Related parameters [VFD-37], [P	[VFD-37], [PROT-04]
Reset method Manually	Manually
Reset condition \quad Reset only w	Reset only when DC bus voltage is lower than 90\% of over-voltage level
Recorded Yes	Yes
Cause	Corrective Action
- Impulsive change of the load - The setting for stall prevention level is smaller than no-load current - Regenerative voltage of motor inertia - Power voltage is too high - ON/OFF switch action of phase-in capacitor in the same power system - Motor ground fault - Incorrect wiring of brake resistor or brake unit - Malfunction caused by interference	- Connect brake resistor, brake unit or DC bus to the drive. - Reduce the load. - Replace to drive with a larger capacity model. - Adjust braking level [VFD-37] or bolt position of the brake unit). - The setting of stall prevention level should be larger than no-load current - Use over-voltage stall prevention function [PROT-04]. Use a brake unit or DC bus - Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. - If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor. - The ground short-circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. Troubleshoot the ground fault. - Check the wiring of brake resistor or brake unit. - Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.

Fault Display	Description	
Overload 2 OL-2 (27)	When output current exceeds the over-load detection level [PROT-13] and exceeds over-load detection time [PROT-14], and when [PROT-12] is set to 2 or 4 , the $0 \mathrm{~L}-2$ error displays.	
Action and Reset		
Action level	When [PROT-12] $=2$ or 4, ot2 is a "Fault", and the fault is recorded.	
Action time	[PROT-14]	
Related parameters	[PROT-12]	
Reset method	Auto	When [PROT-12] = 1 or 3, OL2 is a "Warning" The warning is automatically cleared when the output current < ([PROT-13]-5\%)
	Manually	When [PROT-12] $=2$ or 4, OL2 is a "Fault" and the fault is recorded
Reset condition	Immediately	
Recorded	Yes	
Cause		Corrective Action
- Motor and/or pump misalignment - Dragging motor and/or pump - Motor and/or pump locked - Abrasives in pump - Excess motor cable length		- Amperage is above MAX AMPS at minimum frequency - Remove and repair or replace as required - Reduce motor cable length. Adhere to Maximum Motor Cable Length table - For FE MagForce application, verify motor model selection, pump load, and max amps
Fault Display	Description	
Over slip error 0SL (63)	On the basis of the maximum slip limit set via [MOTOR-19], the speed deviation is abnormal. When the motor drive outputs at constant speed, $\mathrm{F}>\mathrm{H}$ or $\mathrm{F}<\mathrm{H}$ exceeds the level set via [MOTOR-19], and it exceeds the time set via [MOTOR-20], oSL shows. OSL occurs in induction motors only.	
Action and Reset		
Action level	[MOTOR-19]; 100\% of [MOTOR-19] = the maximum limit of the slip frequency	
Action time	[MOTOR-20]	
Related parameters	Faul//Warning based on [MOTOR-21]	
Reset method	Auto	[MOTOR-21] $=0$ is a warning. When the motor drive outputs at constant speed, and F > H or F $<\mathrm{H}$ does not exceed the level set via [MOTOR-19] anymore.
	Manually	When [MOTOR-21] $=1$ or 2, OSL is an error
Reset condition	Immediately	
Recorded	[MOTOR-21] $=1$ or 2, oSL is "Fault" and will be recorded	
Cause		Corrective Action
- Any of the motor p incorrect - Overload - Improper setup of	ters may be	- Verify the motor parameters - Decrease the load - Verify the settings of [MOTOR-18] through [MOTOR-21]

MAINTENANCE
Troubleshooting

Fault Display	Description	
Password error Pcod (52)	Entering the wrong password three consecutive times	
Action and Reset		
Action level	Entering the wrong password three consecutive times	
Action time	Immediately	
Reset method	Manually	
Reset condition	Power-off	
Recorded	Yes	
Cause		Corrective Action
- Incorrect password input through [ADV-02]		Input the correct password after rebooting the motor drive. If you forget the password, input 9999 and press ENTER twice within 10 seconds. If more than 10 seconds passes, try again. The parameter settings will return to the default when the "Input 9999" process is finished.
Fault Display	Description	
PC Err address CE2 (55) PC Err command CE1 (54) PC Err data CE3 (56) PC slave fault CE4 (57)	Data address is illegal Communication command is illegal Data value is illegal Data is written to read-only address	
Action and Reset		
Action level	When the function code is not $03,06,10$, or 63 .	
Action time	Immediately	
Related parameters	[Comm-02]	
Reset method	Manually	
Reset condition	Immediately	
Recorded	No	
Cause		Corrective Action - Check if the communication command is correct. - Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. - Check if the setting for Comm-02 is the same as the setting for the master unit. - Check the cable and replace it if necessary.
- Incorrect communication command from the master unit - Malfunction caused by interference - Different communication setting from the master unit - Disconnection or bad connection of the cable		

MAINTENANCE
Troubleshooting

MAINTENANCE
Troubleshooting

Fault Display	Description
S1-emergy stop Emergency S1 (73)	stop for external safety
Action and Reset	
Action level Hardware de	Hardware detection
Action time \quad Immediately	Immediately
Reset method Manually	Manually
Reset condition \quad Reset only a	Reset only after S1 error is cleared
Recorded Yes	Yes
Cause	Corrective Action
- The switch action of S1 and SCM (OPEN) - S1 and SCM short circuit lines are not connected - Malfunction caused by interference - Hardware failure - Poor connection of the IO card - The IO card does not match the version of the control board	- Reset the switch and cycle the power. - Re-connect the short circuit lines - Verify the wiring/grounding of the main circuit, control circuit and encoder to prevent interference. - If $S 1$ fault still exists after cycling the power, please return to the factory for repair. - Check if the PIN of IO card is broken. - Check if the IO card connects to the control board correctly, and if the screws are tightened well. - For incorrect version, contact Technical Support.
Fault Display	Description
$\begin{array}{l}\text { Short Circuit } \\ \text { OcC (5) }\end{array}$ Short-circuit	Short-circuit is detected between upper bridge and lower bridge of the IGBT module
Action and Reset	
Action level \quad Hardware pr	Hardware protection
Action time \quad Immediately	Immediately
Reset method Manually	Manually
Reset condition \quad Reset in 5 se	Reset in 5 sec. after the fault is cleared
Recorded Yes	Yes
Cause	Corrective Action
- IGBT Error - Short-circuit detecting circuit error	- Check the motor wiring. - Cycle the power, if occ still exists, contact technical support.
Fault Display	Description
Shutdown SHDN (179)	Shutdown detected on Multi-function input
Action and Reset	
Action level \quad Multi-functio	Multi-function Input set to Shutdown N-Latch or Shutdown Latched
Action time Immediately	Immediately
Related parameters [10-20] thro	[10-20] through [10-28]; [10-46]
Reset method	Shutdown N-Latch (not latch)
	Shutdown Latch
Reset condition \quad Deactivate M	Deactivate MI corresponding to Shutdown Latch and Shutdown N-Latch
Recorded Yes	Yes
Cause	Corrective Action
- External device activating shutdown - Nuisance tripping - External shutdown switch is Normally Closed circuit (no shutdown with switch closed)	- Reset external device causing shutdown - Adjust IO-20 DI filter - Set MI to NC with DI NO/NC [IO-46]

MAINTENANCE
Troubleshooting

Fault Display	Description	
$\begin{aligned} & \text { Thermal relay } 1 \\ & \text { EoL1 (22) } \end{aligned}$	Electronics thermal relay 1 protection. The drive coasts to stop once it activates.	
Action and Reset		
Action level	Start counting when output current > 105% of motor 1 rated current	
Action time	[PROT-17] (if the output current is larger than 105\% of motor 1 rated current again within 60 sec, the counting time reduces and is less than [PROT-17])	
Related parameters	[PROT-16], [MOTOR-17]	
Reset method	Manually	
Reset condition	Reset in 5 sec. after the fault is cleared	
Recorded	Yes	
Cause		Corrective Action
- Motor shaft lock - The load is too large - V/F voltage is too high - Overload during low-spe When using a general m operates below rated cu overload may still occur speed operation. - When using VFD dedica PROT-16=0 (electronic th selection motor 1 = inve - Incorrect value of electron relay PROT-17 - The maximum motor fre too low - Torque compensation is - Motor fan error - Unbalanced three-phase of the motor	d operation. tor, even it rent, an uring low- d motors, ermal relay er motor) ic thermal uency is set 00 large impedance	- Remove the shaft lock. - Reduce the load and increase the motor capacity. - Adjust settings for V/F curve, especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). - Decrease low-speed operation time. Replace the drive with a dedicated to VFD model. Increase the motor capacity. - [PROT-16] = 1 electronic thermal relay selection motor $1=$ standard motor (with fan on the shaft). - Reset to the correct motor rated current and [PROT-17] - Reset to the correct motor rated frequency. - Adjust the torque compensation (refer to [MOTOR-17] torque compensation gain) until the current reduces and the motor does no stall. - Check the status of the fan, or replace the fan. - Replace the motor.
Fault Display	Description	
Thermo 1 open tH10 (18) Thermo 2 open tH2o (19)	IGBT hardware failure in temperature detection Hardware failure in capacitor temperature detection	
Action and Reset		
Action level	NTC broken or wiring failure	
Action time	When the IGBT temperature is higher than the protection level and detection time exceeds 100 ms	
Reset method	Manually	
Reset condition	Immediately	
Recorded	Yes	
Cause		Corrective Action
- Hardware failure		- Wait for 10 minutes, and then cycle the power. If fault still exists, call Technical Support

MAINTENANCE
Troubleshooting

Diagnostic Warning Codes

Warning Display	Description	
Analog Loss ACILoss (12) AVILoss (138)	Analog current input loss, including all 4-20 mA and 2-10V signals.	
Action and Reset		
Action condition	When the analog input is below Loss Level (only detects 4-20 mA and 2-V inputs).	
Action time	After Loss Delay	
Related parameters	[IO-01] ACI Loss Trip (0_Disable, 1_Hold Speed, 2_Decel to Stop, 3_Trip Stop, 4_At AI Loss Freq) [IO-02] ACI Loss Level [IO-03] ACI Loss Delay	
Reset method	Auto	When [10-01] is set to Hold or Decel of At AI Loss Freq, action is Warning. When signal is $>4 \mathrm{~mA}>2 \mathrm{~V}$, fault clears
	Manually	When [10-01] is set to Trip, action is Fault
Reset condition	Immediately	
Recorded	When [10-01] is set to Trip, Fault is recorded.	
Cause		Corrective Action
- Loose or broken connection - Sensor failure - Drive failure		- Check the ACl wiring - Check if the ACl signal is less than $4 \mathrm{~mA}(2 \mathrm{~V})$
Warning Display	Description	
App Disconnected ApDx (127)	App disconnected from X-Drive	
Action and Reset		
Action condition	Software check	
Action time	Immediately	
Reset method	Automatically	
Reset condition	Wait 3 seconds	
Recorded	N/A	
Cause		Corrective Action
- App has disconnected from VFD - Phone is out of range from VFD - Phone stopped transmitting Bluetooth		- Open app and reselect VFD from 'My Products' page. - Move phone closer to VFD especially if VFD is within metal enclosure. - Check phone's Bluetooth settings. FE BT Option card will not be listed in the phone's Bluetooth device pairing list.
Warning Display	Description	
Auto tuning tUn (25)	Parameter auto-tuning is processing.	
Action and Reset		
Action condition	When running [Motor-00] motor parameter auto-tuning	
Action time	N/A	
Reset method	Automatically	
Reset condition	When auto-tuning is finished and no error occurs.	
Recorded	N/A	
Cause		Corrective Action
- The motor parameter is running autotuning		- When the auto-tuning is finished, the warning automatically clears.

MAINTENANCE
Troubleshooting

Warning Display		Desc
BT FW incompat BTFW (126)	Bluetooth firmware incompatible with X-Drive firmware. X-Drive firmware must be at least version 1.2.	
Action and Reset		
Action condition	Software check	
Action time	Immediately	
Related parameters	[VFD-49] Firmware Version on the app	
Reset method	N/A	
Reset condition	N/A	
Recorded	N/A	
Cause		Corrective Action
- VFD firmware not at least version 1.2 - Improper communication		- Replace or update VFD with at least 1.2 firmware - Check card installation
Warning Display	Description	
Buf overflow PLor (54)	PLC register overflow	
Action and Reset		
Action condition	When PLC runs the last command and the command exceeds the maximum capacity of the program, the PLor warning shows.	
Action time	Immediately displays when the fault is detected	
Reset method	Automatically	
Reset condition	Check if the program is correct and re-download the program. If the fault does not exist, the warning clears.	
Recorded	N/A	
Cause		Corrective Action
- The program detects source code error during PLC operation		- Disable PLC - Delete PLC program ([ADV-03] = 6) - Enable PLC - Re-download PLC program
Warning Display	Description	
CAN/M Address PCAd (67)	CANopen Master station address error	
Action and Reset		
Action condition	When the CANopen master detects an incorrect or repeated station address from the Follower, the PCAd warning displays.	
Action time	Immediately displays when the fault is detected	
Reset method	Automatically	
Reset condition	The warning clears when reset the station address and run the program again.	
Recorded	N/A	
Cause		Corrective Action
- When the CANopen master detects an incorrect or repeated station address from the follower		- Set the correct follower station address.

Warning Display	Description	
CAN/M bus off PCbF (62)	CANopen Master BUS off	
Action and Reset		
Action condition	When the CANopen master detects error packets more than 255 during the BUS off detection, or when the CANopen card is not installed, the PCbF warning displays. If the BUS cable is not connected, the drive will not receive issues packet, and the PCbF warning will not display.	
Action time	Immediately displays when the fault is detected	
Reset method	Cycle the power	
Reset condition	N/A	
Recorded	N/A	
Cause		Corrective Action
- Malfunction caused by interference - Communication cable is broken or bad connected		- For interference: - Verify wiring/grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. - Make sure the communication circuit is wired in series. - Use CANopen cable or add terminating resistance. - Check or replace the communication cable.
Warning Display	Description	
CAN/M Cycle Time PCCt (64)	CANopen Master cycle time-out	
Action and Reset		
Action condition	When the transmitted packet from CANopen master exceeds the maximum allowable quantity in a certain time, the PCCt warning displays.	
Action time	Immediately displays when the fault is detected	
Reset method	Automatically	
Reset condition	The warning clears when changing the configuration and re-executing the program.	
Recorded	N/A	
Cause		Corrective Action
- When the transmitted p CANopen master exceed maximum allowable qua certain time	cket from the ntity in a	- Increase the time setting of D1090 synchronization cycle

MAINTENANCE
Troubleshooting

Warning Display	Description	
CAN/M Guard err PCGd (61)	CANopen Master guarding error	
Action and Reset		
Action condition	When CANopen Master Node Guarding detects that one of the Followers does not response, the PCGd warning will display	
Action time	Immediately displays when the fault is detected	
Reset method	Automatically	
Reset condition	Check if the program is correct and re-download the program. If the fault does not exist, the warning clears.	
Recorded	N/A	
Cause		Corrective Action
- Follower is not connected or CANopen BUS cable is not connected - Malfunction caused by interference - Communication cable is broken or bad connected		- Connect the Follower and CANopen BUS - For interference: - Verify wiring/grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. - Make sure the communication circuit is wired in series. - Use CANopen cable or add terminating resistance. - Check or replace the communication cable.
Warning Display	Description	
CAN/M Node Lack PCnL (63)	CANopen Master node error	
Action and Reset		
Action condition	When the CANopen master configures different setting nodes from the actual nodes, the PCnL warning displays.	
Action time	Immediately displays when the fault is detected	
Reset method	Automatically	
Reset condition	When connect BUS to the original follower or change the configured node numbers to meet the actual node quantity, the warning clears.	
Recorded	N/A	
Cause		Corrective Action
- The configured node different from the actu - Communication cable is connected	ntity is nodes roken or bad	- Connect BUS to the original follower, or change the configured node numbers to meet the actual node quantity. - Check or replace the communication cable.
Warning Display	Description	
CAN/M SDO over PCSF (65)	CANopen Master SDO overflow	
Action and Reset		
Action condition	When the CANopen master transmits too much SDO that causes buffer overflow, the PCSF warning displays	
Action time	Immediately displays when the fault is detected	
Reset method	Cycle the power or stop the PLC and run the PLC again	
Reset condition	N/A	
Recorded	N/A	
Cause		Corrective Action
- Internal PLC transmits at once	much SDO	- The PLC program needs to confirm receiving the SDO feedback data before sending another SDO command.

MAINTENANCE
Troubleshooting

Warning Display	Description	
CAN/S Buf over CSbn (44)	CANopen SDO receives register overflow	
Action and Reset		
Action condition	The upper unit sends too much SDO and causes buffer overflow	
Action time	Immediately displays when the fault is detected	
Reset method	Automatically	
Reset condition	The upper unit sends a reset package to clear the warning.	
Recorded	N/A	
Cause		Corrective Action
- Too much SDO from the upper unit		- Check if the master sends too much SDO command. Make sure the master sends SDO command according to the command format.
Warning Display	Description	
CAN/S Bus Off CbFn (39)	CANopen BUS off error	
Action and Reset		
Action condition	Hardware: When CANopen card is not installed, CbFn fault will occur. Software: Too much interference on BUS. When the CAN_H and CAN_L communication cable is short, the master receives wrong package, and CbFn fault occurs.	
Action time	Immediately displays when the fault is detected	
Reset method	Manually	
Reset condition	Cycle the power	
Recorded	When [SET-08] does not equal 3, CbFn is a warning and isn't recorded.	
Cause		Corrective Action
- Check if the CANopen card is installed - Check if the CANopen speed is correct - Malfunction caused by interference - Communication cable is broken or bad connected		- Make sure the CANopen card is installed. - Reset CANopen speed - For interference: - Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. - Make sure the communication circuit is wired in series. - Use CANopen cable or add terminating resistance. - Check or replace the communication cable.
Warning Display	Description	
CAN/S FRAM fail CFrn (42)	CANopen memory error	
Action and Reset		
Action condition	When the user update firmware version of the control board, the FRAM internal data will not be changed, then CFrn fault will occur.	
Action time	Immediately act when the fault is detected	
Reset method	Manually	
Reset condition	[ADV-03] $=7$	
Recorded	When [SET-08] does not equal 3, CFrn is a warning and isn't recorded.	
Cause		Corrective Action
- CANopen internal me	ry error	- Disable CANopen - Reset CANopen ([SET-07] = 7) - Reset CANopen station address

Warning Display	Description	
CAN/S Idx exceed Cldn (40)	CANopen Index error	
Action and Reset		
Action condition	CANopen communication Index error	
Action time	Immediately displays when the fault is detected	
Reset method	Manually	
Reset condition	Upper unit sends a reset package to clear this fault	
Recorded	When [SET-08] does not equal 3 , Cldn is a warning and isn't recorded.	
Cause		Corrective Action
- Incorrect setting of CANopen index - Reset CANopen Index ([ADV-03] = 7)		
Warning Display		Description
CAN/S protocol CPtn (46)	CANopen protocol format error	
Action and Reset		
Action condition	The follower detects that data from the upper unit cannot be recognized, and then shows CPtn warning	
Action time	Immediately displays when the fault is detected	
Reset method	Automatically	
Reset condition	Upper unit sends a reset package to clear the warning	
Recorded	N/A	
Cause		Corrective Action
- The upper unit sends incorrect communication packet		Make sure the master sends the packet based on CANopen DS301 standard command format.
Warning Display	Description	
$\begin{aligned} & \text { CAN/S SDO T-out } \\ & \text { CSdn (43) } \end{aligned}$	SDO transmission time-out (only shows on master station)	
Action and Reset		
Action condition	When the CANopen master transmits SDO command, and the Follower response "time-out", CSdn warning will occur.	
Action time	Immediately displays when the fault is detected	
Reset method	Automatically	
Reset condition	When the master resends a SDO command and receives the response, the warning clears.	
Recorded	N/A	
Cause		Corrective Action
- Follower is not connec - The synchronize cycle - Malfunction caused by - Disconnection or bad the communication ca	set too short terference nection of	- Connect follower and CANopen BUS. - Increase the synchronization time - For interference: - Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. - Make sure the communication circuit is wired in series. - Use CANopen cable or add terminating resistance. - Check the status of the cable, or replace the cable.

MAINTENANCE
Troubleshooting

Warning Display	Description
Check sum PLSn (56) PLC checks	m error
Action and Reset	
Action condition PLC checks	PLC checksum error is detected after power on, then PLSn warning shows
Action time Immediate	Immediately displays when the fault is detected
Reset method Automatica	Automatically
Reset condition \quad Check if the	Check if the program is correct and re-download the program. If the fault does not exist, the warning clears.
Recorded N/A	N/A
Cause	Corrective Action
- The program detects checksum error during PLC operation	- Disable PLC - Remove PLC program ([ADV-03] = 6) - Enable PLC - Re-download PLC program
Warning Display	Description
Comm. Error 1 CE1 (1) RS-485 Mo Comm. Error 2 CE2 (2) RS-485 Mo Comm. Error 3 CE3 (3) RS-485 Mo Comm. Error 4 CE4 (4) RS-485 Mo	RS-485 Modbus illegal function code RS-485 Modbus illegal data address RS-485 Modbus illegal data value RS-485 Modbus data is written to read-only address
Action and Reset	
Action condition CE1: When CE2: When CEE: When CE4: When	CE1: When the function code is not $03,06,10$ and 63 CE2: When the input data address is incorrect CE3: When the length of communication data is too long CE4: When the data is written to read-only address
Action time Immediate	Immediately
Related parameters [Comm-02]	[Comm-02]
Reset method Automatica	Automatically when drive receives the correct function code
Reset condition Immediate	Immediately
Recorded N/A	N/A
Cause	Corrective Action
- Incorrect communication command from upper unit - Malfunction caused by interference - Different communication setting from the upper unit - Disconnection or bad connection of the cable	- Check if the communication command is correct. - Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. - Check if the setting for [Comm-02] is the same as the setting for the upper unit. - Check the cable and replace it if necessary.

Warning Display	Description	
Comm. Error 10 CE10 (5)	RS-485 Modbus transmission time-out	
Action and Reset		
Action condition	CE10: When [Comm-10] $=0$ and the motor drive keeps running and the time has exceeded [Comm-03]	
Action time	[Comm-03]	
Related parameters	[Comm-02]	
Reset method	Automatically	
Reset condition	When drive receives the correct function code	
Recorded	N/A	
Cause		Corrective Action - Check if the upper unit transmits the communication command within the setting time for [Comm03]. - Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. - Check if the setting for [Comm-02] is the same as the setting for the upper unit. - Check the cable and replace it if necessary.
- The upper unit does not transmit the communication command within [Comm-03] setting time - Malfunction caused by interference - Different communication setting from the upper unit - Disconnection or bad connection of the cable		
Warning Display	Description	
Copy Model Err SE3 (30)	Keypad COPY error 3: copy model error	
Action and Reset		
Action condition	"SE3" warning occurs when different drive identity codes are found during copying parameters.	
Action time	Immediately act when the error is detected	
Reset method	Manually	
Reset condition	N/A	
Recorded	N/A	
Cause		Corrective Action
- Keypad copy between different power range drives		- It is mainly to prevent parameter copies between different $\mathrm{HP} /$ models.
Warning Display	Description	
Copy PLC Func CPLF (95)	KPC-CC01 Copy PLC function should be executed when PLC is off	
Action and Reset		
Action condition	Software detection	
Action time	Immediately acts	
Reset method	Manually	
Reset condition	Directly resets	
Recorded	N/A	
Cause		Corrective Action
- PLC function is enabled CCO1 is running copy PLC	when KPC-	- Disable PLC function first, then run the PLC copy function again

MAINTENANCE
Troubleshooting

Warning Display	Description	
Copy PLC Version CPLv (93)	Copy PLC version error.	
Action and Reset		
Action condition	Software detection	
Action time	Immediately	
Reset method	Manually	
Reset condition	Directly resets	
Recorded	N/A	
Cause		Corrective Action
- Incompatible PLC program is copied to the drive		- Check if the copied PLC program is for the X-Drive. - Use the correct PLC program.
Warning Display	Description	
Data defect PLdA (52)	Data error during PLC operation	
Action and Reset		
Action condition	The program detects incorrect write-in address when decoding the program source code and downloading the PLC program (e.g. the address has exceeded the range), then PLdA warning acts.	
Action time	Immediately	
Reset method	Automatically	
Reset condition	Check if the program is correct and re-download the program. If the fault does not exist, the warning clears.	
Recorded	N/A	
Cause		Corrective Action
- During PLC operation, the external Modbus has written/read incorrect data to internal PLC program		- Check if the upper unit transmits the correct command.
Warning Display	Description	
Dec. Energy back dEb (123)	Deceleration energy backup	
Action and Reset		
Action condition	Software detection	
Action time	N/A	
Related parameters	0 : Disable 1: dEb with auto accel./decel., the output frequency will note return after power reply. 2: dEb with auto accel./decel., the output frequency will return after power reply. 3: dEb low-voltage control, then increase to 350 VDC / 700 VDC and decelerate to stop. 4: dEb high-voltage control of 350 VDC / 700 VDC and decelerate to stop	
Reset method	Manually	
Reset condition	Immediately	
Recorded	N/A	
Cause		Corrective Action
- Instantaneous power off or low voltage and unstable/ sudden heavy load of the power that cause the voltage drop - Unexpected power off		- Check the power consumption

MAINTENANCE
Troubleshooting

Warning Display	Description
Deviation Warn dAvE (18) Over speed	deviation warning
Action and Reset	
Action condition N / A	
Action time N/A	
Reset method Automaticaly	
Reset condition After the drive	ve stops
Recorded N/A	
Cause	Corrective Action
- Improper parameter setting for the slip error - Improper setting for ASR parameter and acceleration/deceleration - Accel./ Decel. time is too short - Motor locked - Incorrect parameter setting of torque limit - Malfunction caused by interference	- Reset ASR parameters. Then set proper accel./ decel. time. - Reset proper accel./ decel. time. - Remove the causes of motor locked. - Check the active timing of the system. - Adjust to proper setting value. - Verify wiring of the control circuit, and wiring/grounding of the main circuit to prevent interference.
Warning Display	Description
$\begin{array}{l}\text { Download fail } \\ \text { PLdF (59) }\end{array}$ PLC downlo	PLC download fail
Action and Reset	
Action condition \quad PLC downlo	PLC download fail due to momentary power loss during the downloading, when power is ON again, warning shows.
Action time \quad Immediately	Immediately displays when the fault is detected
Reset method \quad Automaticaly	Automatically
Reset condition \quad Check if the	Check if the program is correct and re-download the program. If the fault does not exist, the warning clears.
Recorded N/A	N/A
Cause	Corrective Action
- PLC download is forced to stop, so the program write-in is incomplete	- Check if there is any error in the program and re-download the PLC program
Warning Display	Description
Est-Speed REV Estimated sp SpdR (105)	Estimated speed is in a reverse direction with motor actual running direction
Action and Reset	
Action condition Software de	Software detection
Action time \quad N/A	N/A
Reset method Manually	Manually
Reset condition Immediately	Immediately
Recorded N/A	N/A
Cause	Corrective Action
- The motor runs in reverse direction at start - The difference between motor parameter measured Rr and Rs value is too large - Insufficient output torque is dragged to the reverse direction by the load.	- Check if the motor is hold when started, or start the motor with speed source. - Normally the Rr value of IM is $\mathrm{Rs} \times 0.7$. If there is much difference of the measured value (e.g. $\mathrm{Rr}=\mathrm{Rs} \times 0.3$), proceed the motor parameter auto-tuning again. - Increase the output torque.

MAINTENANCE
Troubleshooting

MAINTENANCE

Troubleshooting

MAINTENANCE

Troubleshooting

Warning Display	Description
ExCom No power There is no $\operatorname{ECnP}(74)$	ower supply on the DeviceNet
Action and Reset	
Action condition \quad There is no	There is no power supply on the DeviceNet
Action time \quad Immediate	Immediately
Reset method \quad Re-power	Re-power
Reset condition Immediate	Immediately
Recorded N/A	N/A
Cause	Corrective Action
- The drive detects that DeviceNet has no power	- Check if the cable and power is normal. If yes, return to the factory for repair.
Warning Display	Description
ExCom Pr data Profibus pa $\operatorname{ECPP}(78)$	Profibus parameter data error
Action and Reset	
Action condition N / A	N/A
Action time N/A	N/A
Reset method Manually	Manually
Reset condition Immediate	Immediately
Recorded N/A	N/A
Cause	Corrective Action
- The GSD file is incorrect	- Get the correct GSD file from the software
Warning Display	Description
ExCom pwr loss Low voltag ECLv (71)	Low voltage of communication card
Action and Reset	
Action condition \quad The 5V pow	The 5V power that drive provides to communication card is to low
Action time \quad Immediate	Immediately
Reset method \quad Re-power	Re-power
Reset condition N/A	N/A
Recorded N / A	N/A
Cause	Corrective Action - Make sure the communication card is well inserted. - If $5 v$ power is too low: - Switch the communication card to other X-Drives and observe if there is ECLv warning shown. If yes, replace with a new communication card; if not, replace the drive. - Use another communication card to test if the ECLv warning has shown as well. If not, replace the card; if yes, replace the drive.
- The card is loose - The 5 V power that drive provides to communication card is to low	

Warning Display	Description	
ExCom Rtn def ECrF (83)	Communication card returns to the default setting	
Action and Reset		
Action condition	Communication card returns to the default setting	
Action time	N/A	
Reset method	Automatically	
Reset condition	Immediately resets	
Recorded	N/A	
Cause		Corrective Action
- Communication card is returning to default setting		- No actions necessary
Warning Display	Description	
$\begin{aligned} & \text { ExCom Test Mode } \\ & \text { ECtt (72) } \end{aligned}$	Communication card is in the test mode	
Action and Reset		
Action condition	Immediately	
Action time	N/A	
Reset method	Cycle the power and enter the normal mode	
Reset condition	N/A	
Recorded	N/A	
Cause		Corrective Action
- Communication command error		- Cycle the power
Warning Display	Description	
Function defect PLFF (55) PLFn (53)	Function code error during PLC operation PLC download function code error	
Action and Reset		
Action condition	The program detects incorrect command (unsupported command) during PLC operation or downloading.	
Action time	Immediately displays when the fault is detected	
Reset method	Automatically	
Reset condition	Check if the program is correct and re-download the program. If the fault does not exist, the warning clears.	
Recorded	N/A	
Cause		Corrective Action
- The PLC runs an incorre during operation - Unsupported comman while downloading the	command has used rogram	- When starting the PLC function and there is no program in the PLC, the PLFF warning shows. This is a normal warning. Please download the program. - Check if the firmware of the drive is the old version. If yes, contact Technical Support.

Warning Display	Description	
Guarding T-out CGdn (36)	CANopen guarding time-out 1	
Action and Reset		
Action condition	When CANopen Node Guarding detects that one of the followers does not response, the CGdn error displays. The upper unit sets factor and time during configuration.	
Action time	The time that upper unit sets during configuration	
Reset method	Manually	
Reset condition	The upper unit sends a reset package to clear this fault	
Recorded	N/A	
Cause		Corrective Action
- The guarding time is too short, or less detection times - Malfunction caused by interference		- Increase the guarding time (Index 100C) and detection times. - Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. Make sure the communication circuit is wired in series. Use CANopen cable or add terminating resistance.
Warning Display	Description	
Heartbeat T-out CHbn (37)	CANopen heartbeat error	
Action and Reset		
Action condition	When CANopen Heartbeat detects that one of the followers does not response, the CHbn error shows. The upper unit sets the confirming time of producer and consumer during configuration.	
Action time	The upper unit sets the confirming time of producer and consumer during configuration.	
Reset method	Manually	
Reset condition	The upper unit sends a reset package to clear this fault	
Recorded	No	
Cause		Corrective Action
- The heartbeat time is too short - Malfunction caused by interference - Communication cable is broken or bad connection		- Increase heartbeat time (Index 1016) - Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. Make sure the communication circuit is wired in series. Use CANopen cable or add terminating resistance. - Check or replace the communication cable.
Warning Display	Description	
InrCOM Time Out ictn (101)	Internal communication time-out	
Action and Reset		
Action condition	When [PLC-23] $=(-1)-(-10)$ (no -9) and the internal communication between Master and Follower is abnormal.	
Action time	Immediately	
Related parameters	[PLC-23], [Comm-02]	
Reset method	Automatically	
Reset condition	The warning clears when the communication is back to normal condition	
Recorded	N/A	
Cause		Corrective Action - Verify wiring/grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance. - Check if the setting for [Comm-02] is the same as the setting for upper unit - Check the cable status or replace the cable
- Malfunction caused - Different communica with the upper unit - Communication cable connected well	terference conditions eak off or not	

MAINTENANCE
Troubleshooting

Warning Display	Description
Motor Over Heat oH3 (22) Motor over-	Motor over-heating warning. The AC motor drive detects the temperature inside the motor is too high
Action and Reset	
Action condition PTC input le or PT100 input It	```PTC input level > [PROT-20] (default = 50%) or PT100 input level > [PROT-31] (default = 7 V)```
Action time \quad Immediately	Immediately
Related parameters [PROT-19] For PTC: Wh automaticall For PT100: clears. If the tempe setting for Pr. Auto	[PROT-19] For PTC: When [PROT-19] = 0 and when the temperature is equal to or less than [PROT-20] level, the oH3 warning automatically clears. When [PROT-19] $=0$, it automatically resets. For PT100: When [PROT-19] = 0 and when the temperature is < [PROT-30] level, the oH3 warning automatically clears. If the temperature is between [PROT-30] and [PROT-31], the frequency outputs according to the operating frequency setting for Pr.06-58.
Reset method \quad Automaticaly	Automatically
Reset condition For PTC: Wh For PT100:	For PTC: When the temperature is equal or less than [PROT-20] level, the oH3 warning automatically clears For PT100: When the temperature is < [PROT-30] level, the oH3 warning automatically clears.
Recorded N/A	N/A
Cause	Corrective Action
- Motor locked - The load is too large - Ambient temperature is too high - Motor cooling system error - Motor fan error - Operates at low-speed too long - Accel./ Decel. time and working cycle is too short - V/F voltage is too high - Check if the motor rated current matches the motor nameplate - Check if the PTC/PT100 is properly set and wired - Check if the setting for stall prevention is correct - Unbalance three-phase impedance of the motor - Harmonics is too high	- Clear the motor lock status. - Decrease the loading. Replace with a motor with larger capacity. - Change the installed place if there are heating devices in the surroundings. Install/ add cooling fan or air conditioner to lower the ambient temperature. - Check the cooling system to make it work normally. - Replace the fan. - Decrease low-speed operation time. Change to dedicated motor for the drive. Increase the motor capacity. - Increase setting values for [SET-12] and [SET-13] (accel./ decel. time). - Adjust settings for [VFD-02] (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed). - Configure the correct rated current value of the motor again. - Check the connection between PTC/PT100 thermistor resistor and the heat protection. - Set the stall prevention to the proper value. - Replace the motor. - Use remedies to reduce harmonics.

Warning Display		
M-VFD No Commu MVNC (131)	For Multi-drive operation, this VFD can not connect to others.	
Action and Reset		
Action condition	This drive can not detect other drives.	
Action time	Immediately	
Related parameters	ADV-35, ADV-36, and ADV-37	
Reset method	Automatically once parameters are set correctly	
Reset condition	Immediately; May require power cycle of system once parameters have been adjusted.	
Recorded	N/A	
Cause		Corrective Action
- Communication line b - Multiple VFDs with the Multi-VFD ID	me ADV-37	- Check wiring between drives and repla - Check [ADV-37] Multi-VFD ID on each less than [ADV-35] Multi-VFD Set.
Warning Display	Description	
No end command PLEd (57)	PLC end command is missing	
Action and Reset		
Action condition	The "End" command is missing until the last command is executed, the PLEd warning shows	
Action time	Immediately	
Reset method	Check if the program is correct and re-download the program.	
Reset condition	If the fault does not exist, the warning automatically clears.	
Recorded	N/A	
Cause		Corrective Action
- There is no "END" com PLC operation	and during	- Disable PLC - Remove PLC program ([ADV-03] = 6) - Enable PLC - Re-download PLC program

MAINTENANCE
Troubleshooting

Warning Display	Description	
Output PHL Warn OPHL (28)	Output phase loss	
Action and Reset		
Action condition	[PROT-23]	
Action time	N/A	
Related parameters	[PROT-21]	
Reset method	Set [PROT-21] is set to 0 and stop the drive	
Reset condition	Immediately resets	
Recorded	N/A	
Cause		Corrective Action
- Unbalanced three-phase impedance of the motor - Check if the wiring is incorrect - Check if the motor is a single-phase motor - Check if the current sensor is broken - If capacity of the drive is larger than the motor		- Replace the motor. - Check the cable. Replace the cable. - Choose a three-phase motor. - Check if the control board cable is loose. If yes, reconnect the cable and run the drive to test. If the error still occurs, return to the factory for repair. Check if the three-phase current is balanced with a current clamp meter. If the current is balanced and the OPHL error still shows on the display, return to the factory for repair. - Choose the matches capacity of the drive and motor.
Warning Display	Description	
Over heat 1 Warn oH1 (9)	The AC motor drive detects over-heating of IGBT	
Action and Reset		
Action condition	The AC motor drive detects over-heating of IGBT, and over the protection level of oH1 warning. When [PROT-18] is higher than the IGBT over-heating level, the drive shows oH1 error without displaying oH1 warning.	
Action time	When IGBT temperature is higher than [PROT-18] setting value	
Related parameters	[PROT-18]	
Reset method	Automatically	
Reset condition	The drive resets when IGBT temperature is lower than oH1 warning level minus (-) $5^{\circ} \mathrm{C}$	
Recorded	N/A	
Cause		Corrective Action - Check the ambient temperature. Regularly inspect the ventilation hole of the control cabinet. Change the installed place if there are heating objects, such as braking resistors, in the surroundings. Install/ add cooling fan or air conditioner to lower the temperature inside the cabinet. - Remove the obstruction or replace the cooling fan. - Increase ventilation space of the drive. - Decrease loading. Decrease the carrier. Replace with a drive with larger capacity. - Replace with a drive with larger capacity.
- Ambient temperatur inside the cabinet is is obstruction in the of the control cabine - Check if there is any the heat sink or if the - Insufficient ventilatio - Check if the drive ma corresponded loading - The drive has run 100 rated output for a lon	temperature igh, or there ilation hole ruction on is running ace s the more of the me	

MAINTENANCE
Troubleshooting

MAINTENANCE
Troubleshooting

Warning Display	Description	
Save Error 2 SE2 (8)	Keypad COPY error 2: parameter writing error	
Action and Reset		
Action condition	The parameters incorrectly at the time you copy parameters to the drive. For example, you copy the new firmware version with added parameters to the drive with old firmware version.	
Action time	N/A	
Reset method	Manually	
Reset condition	Immediately reset	
Recorded	N/A	
Cause		Corrective Action
- Add new parameters to the new firmware version. - Malfunction caused by interference		- SE2: In this stage, the copied data has been transmitted to the Follower. The Follower compares and processes the copied data, and then saves the data to the Data ROM. During the process, the data error (should be attribution error) may occur, or the data cannot be saved to EEPROM. At this time, the warning occurs. It is suggested to check the status of Data ROM and remove the error causes first. If you cannot clear the error, please contact Technical Support. - Verify the wiring and grounding of the main circuit, control circuit and the encoder for effective antiinterference performance.
Warning Display	Description	
Save mem defect PLSv (51)	Data error during PLC operation	
Action and Reset		
Action condition	The program detects incorrect written address (e.g. the address has exceeded the range) during PLC operation	
Action time	Immediately	
Reset method	Check if the program is correct and re-download the program	
Reset condition	Automatically	
Recorded	N/A	
Cause		Corrective Action
- An incorrect written address is detected during PLC operation		- Make sure the write-in address is correct and re-download the program.
Warning Display	Description	
Scan time fail PLSF (60)	PLC scan time exceeds the maximum allowable time	
Action and Reset		
Action condition	The PLC scan time exceeds the maximum allowable time (400 ms)	
Action time	Immediately	
Reset method	Check if the program is correct and re-download the program	
Reset condition	N/A	
Recorded	N/A	
Cause		Corrective Action
- The PLC scan time exceeds the maximum allowable time (400 ms)		- Check if the source code is correct and re-download the program.

Warning Display	Description	
Under Current uC (13)	Low current	
Action and Reset		
Action condition	[SET-42]	
Action time	[SET-44]	
Related parameters	[SET-41]	
Reset method	Automatically	"Warning" occurs when [SET-41] = 3. "Warning" clears when the output current is > ([SET-42] + 0.1 A).
	Manually	"Error" occurs when [SET-41] = 1 and 2. Drive needs to be reset manually.
Reset condition	Immediately	
Recorded	Does not record when [SET-41] = 3 and uC displays "Warning"	
Cause		Corrective Action
- Broken motor cable - Improper setting for the low current protection - Low load		- Exclude the connection issue of the motor and its load. - Set the proper settings for [SET-42], [SET-44] and [SET-41]. - Check the loading status. Make sure the loading matches the motor capacity.
Warning Display	Description	
VFD HOA not Aut VnAT (132)	For Multi-drive operation, this VFD is not in Auto mode. This drive will not operate in multi-drive operation with this warning present.	
Action and Reset		
Action condition	[ADV-35] Multi-VFD Set is not 0_Single VFD and mode set to HAND or OFF.	
Action time	Immediately	
Related parameters	[ADV-35] Multi-VFD Set	
Reset method	Automatically once set [ADV-35] Mutl-VFD Set to 0-Single VFD or change mode to AUTO.	
Reset condition	Immediately	
Recorded	N/A	
Cause		Corrective Action
- This drive is in HAND or OFF mode. - This drive has Multi-drive operation enabled.		- Use [SET-60] HOA Mode Source to change mode to AUTO. - Change [ADV-35] Multi-VFD Set to 0-Single VFD to disable Multi-drive operation.
Warning Display	Description	
VFD-N Invalid Vivd (130)	For Multi-drive operation, at least one follower is connected but the settings on the follower are invalid compared to the master (this drive).	
Action and Reset		
Action condition	A follower settings of [ADV-35], [ADV-36], [SET-07], and [SET-17] different than master drive (this drive). To identify master drive, set [SET-58] to 23 Commu Role then 0=No Role, 1=Master, and 2=Follower.	
Action time	Immediately	
Related parameters	[ADV-35], [ADV-36], [SET-07], and [SET-17]	
Reset method	Automatically once parameters are set correctly	
Reset condition	Immediately; May require power cycle of system once parameters have been adjusted.	
Recorded	N/A	
Cause		Corrective Action - Verify settings match master drive. To identify master drive, set [SET-58] to 23 Commu Role then $0=$ No Role, 1=Master, and 2=Follower. - If network has multiple masters, make sure each drive on network has unique [ADV-37] Mulit-VFD and that value is equal or less than Multi-VFD Set. - If network has multiple masters, check communication wiring between drives and replace wiring as needed.
- Wrong parameter values ADV-36, SET-07, and SE - Multiple masters on ne	$\begin{aligned} & \text { for ADV-35, } \\ & -17 \\ & \text { fork } \end{aligned}$	

MAINTENANCE

Troubleshooting

Warning Display	Description
VFD-N Lost For Vlos (129)	For Multi-drive operation, at least one follower is disconnected from the master (this drive).
Action and Reset	
Action conditionThe Thi To	The number of drives detected are less than [ADV-35] Multi-VFD Set. This warning only occurs on the master drive. To identify master drive, set [SET-58] to 23 Commu Role then 0=No Role, 1=Master, and 2=Follower.
Action time Im	Immediately
Related parameters [AD	[ADV-35], [ADV-36], and [ADV-37]
Reset method Auto	Automatically once parameters are set correctly
Reset condition Im	Immediately; May require power cycle of system once parameters have been adjusted.
Recorded N/A	N/A
Cause	Corrective Action
- Communication line broken - Multiple VFDs with the same [ADV-37] Multi-VFD ID	- Check wiring between drives and replace as needed. - Check [ADV-37] Multi-VFD ID on each drive to make sure each drive has a unique value and that it is less than [ADV-35] Multi-VFD Set.

Fan Replacement

AWARNING

Risk of bodily injury or damage to drive or other equipment. Contact with hazardous voltage could result in death or serious injury.

- Disconnect and lock out all power before installing or servicing equipment.
- Do not attempt to replace fans until power has been removed and 10 minutes have passed to allow internal voltage to discharge.
- Fans cannot be replaced with power applied. Damage to VFD may occur.

Frame A Heat Sink Fan

1. Press the tabs on both sides of the fan to release and slide out the fan.
2. Disconnect the power connector before completely removing the fan.

Frame B Heat Sink Fan

1. Press the tabs on both sides of the fan to release and slide out the fan.
2. Disconnect the power connector before completely removing the fan.

MAINTENANCE
Fan Replacement

Frame B and C Capacitor Fan

1. Disconnect fan power connector.
2. Lift the fan out using a flathead screwdriver.

Frame C Heat Sink Fan

Some Frame C models use one fan and some use two.

1. Before removing fans, remove the cover using a flathead screwdriver.
2. Disconnect fan power connectors.
3. Remove screws and remove fans. When replacing screws, tighten to a torque of 8.67 to 10.4 in - lbs (0.98 to 1.18 Nm).
4. When installing new fans, make sure label faces the inside of the drive.

Frame D Heat Sink Fan

1. Remove four screws to release and slide out the fan assembly. When replacing screws, tighten to a torque of 20.8 to 22.1 in-lbs (2.35 to 2.5 Nm).
2. Disconnect the power connectors before completely removing the fan.

Frame D Capacitor Fan

1. Remove two screws and press the tabs on both sides to remove the lower cover. When replacing screws, tighten to a torque of 10.4 to 13 in-lbs (1.18 to 1.47 Nm).
2. Press the top of the keypad and remove the keypad.
3. Remove two screws and press the tabs on both sides to remove the upper cover. When replacing screws, tighten to a torque of 5.2 to 6.9 in-lbs (0.59 to 0.78 Nm).
4. Disconnect fan power connector.
5. Remove one screw and pull out the fan. When replacing the screw, tighten to a torque of 8.9 to 10.4 inlbs (1.0 to 1.18 Nm).

Frame E Heat Sink Fan

Frame E models use multiple heat sink fan styles. Be sure to order the correct part when replacing the fan.

1. Remove four screws to release and slide out the fan assembly. When replacing screws, tighten to a torque of 20.8 to $22.1 \mathrm{in}-\mathrm{lbs}(2.35$ to 2.5 Nm).
2. Disconnect the power connectors before completely removing the fan.

Frame E Capacitor Fan

1. Remove four screws to release and slide out the fan assembly. When replacing screws, tighten to a torque of 20.8 to $22.1 \mathrm{in}-\mathrm{lbs}(2.35$ to 2.5 Nm).
2. Disconnect the power connectors before completely removing the fan.

Frame F Heat Sink Fan

1. Remove four screws to release and slide out the fan assembly. When replacing screws, tighten to a torque of 10.4 to 13 in-lbs (1.18 to 1.47 Nm).
2. Disconnect the power connectors before completely removing the fan.

Frame F Capacitor Fan

1. Remove four screws and remove the lower cover. When replacing screws, tighten to a torque of 10.4 to 13 in-lbs (1.18 to 1.47 Nm).
2. Remove four screws and remove the upper cover. When replacing screws, tighten to a torque of 20.8 to 22.1 in-lbs (2.35 to 2.5 Nm).
3. Disconnect fan power connector and remove three screws. When replacing the screw, tighten to a torque of 20.8 to 22.1 in-lbs (2.35 to 2.5 Nm).
4. Pull out the fan.

Frame G Heat Sink Fan

1. Remove four screws and remove the lower cover. When replacing screws, tighten to a torque of 10.4 to 13 in-lbs (1.18 to 1.47 Nm).
2. Remove eight screws from the top cover. When replacing screws, tighten to a torque of 30 to 34.5 inlbs (3.4 to 3.9 Nm).
3. Remove two screws from the bottom of the upper front cover. When replacing screws, tighten to a torque of 12 to 14 in-lbs (1.37 to 1.57 Nm).
4. Remove upper front cover.
5. Release clip and disconnect fan power connector.
6. Remove three screws from fan. When replacing the screws, tighten to a torque of 12 to 14 in-Ibs (1.37 to 1.57 Nm).
7. Remove protective covers and pull out the fan by placing fingers through the lifting holes.

Frame H Heat Sink Fan

1. Remove four screws and remove the lower front cover. When replacing screws, tighten to a torque of 12 to 14 in-lbs (1.37 to 1.57 Nm).
2. Remove eight screws and remove the upper front cover. When replacing screws, tighten to a torque of 20.8 to 22.1 in-lbs (2.35 to 2.5 Nm).
3. Disconnect two fan power connectors.
4. Remove three screws from each fan and pull out the fans. When replacing the screws, tighten to a torque of 20.8 to 22.1 in-lbs (2.35 to 2.5 Nm).

MAINTENANCE
Fan Replacement

PARAMETER REFERENCE TABLES

Parameter Descriptions > SET Menu

> AR = Adjustable while Running.

CODE	Mod	AR	Display Name	Range	Description
SET-00	0000	N	Application Sel	O_Basic 1_Supply Fan 2_Exhaust Fan 3_Cooling Tower 4_Centrif Pump 5_Submers Pump 6_Vacuum 7_Constant Torque 8_FE MagForce 9_PM Motor	Mechanical application the VFD is running; should be set first during VFD programming. Selection automatically adjusts many default parameters to common values for the application. Additional adjustments may be required for optimum performance. Refer to the application descriptions in "Applications" on page 15 for more information. Important: Whenever the application is changed, many default parameters are changed. Be sure to verify settings to ensure proper operation. Refer to the Default Settings tables in "Default Settings Table - SET Menu" on page 52.
SET-01	0001	N	Input Phase	0_Three-Phase 1_Single-Phase	The VFD is capable of using a 3-Phase or Single-Phase input power source, but should be de-rated for Single-Phase input power.
SET-02	0002	N	Motor HP	0.5~655 HP	Default is set based on VFD rating. User should enter the rated motor HP, found on the motor nameplate.
SET-03	0003	N	Motor FLA (SFA)	1/10 of max capacity-999.9 Full Load Amperage	Default is set based on VFD rating. User should enter the rated motor FLA, found on the motor nameplate. If [SET-00] is set to Submersible, enter the SFA rating from the motor nameplate. All internal overload protection features for the VFD and motor are calculated based on the value in this parameter.
SET-04	0004	N	Motor RPM	0-3600 RPM	Rated Motor RPM from motor nameplate when running at nameplate frequency.
SET-05	0005	N	Motor Voltage	$\begin{aligned} & 230 \mathrm{~V}: 0 \text { to } 255 \mathrm{~V} \\ & 460 \mathrm{~V}: 0 \text { to } 510 \mathrm{~V} \\ & 575 \mathrm{~V}: 0 \text { to } 637 \mathrm{~V} \\ & 690 \mathrm{~V}: 0 \text { to } 720 \mathrm{~V} \end{aligned}$	Rated voltage of the motor, found on the motor nameplate. The VFD can produce output voltage equal to or less than input power voltage.
SET-06	0006	N	Motor Freq Sel	$\begin{aligned} & 0-50 \mathrm{~Hz} \\ & 1-60 \mathrm{~Hz} \end{aligned}$	Motor rated frequency. If Motor Freq Sel [SET-06] is changed to 50 Hz , all output frequency related parameters are adjusted. Refer to "Default Settings Table - Frequency Defaults with $50 \mathrm{Hz"}$ on page 64.
SET-07	0007	N	Auto Speed Ref	0_Keypad 1_Up/Down DI 2_AVII Analog 3_ACI Analog 4_AVI2 Analog 5-RS485 Serial 6_Com Card 7_PID Output	Source of speed reference when in Auto mode. 0_Keypad input. 1_Digital Input when DI terminal [I0-21~28] set to Up and Down. 2, 3, \& 4_Analog input from BMS, PLC, Potentiometer or other control device. 5_RS-485 Interface 6_Communications card control. 7_PID output. When PID mode is selected, additional parameters must be verified for setpoints, inputs, and limits.
SET-08	0008	N	Auto Run Cmd	0_Keypad 1_Digital Input 2_RS485 Serial 3-Com Card 4_Ext HOA in Auto	Source of Run Command in Auto mode. 0_Keypad: Run command from Start/Stop button. 1_Digital Input: Run command from digital input [IO-21~28] set to FWD or $\overline{R E V}$. If direction is set here, then dedicated FWD input is disabled. Keypad STOP is disabled. 2_RS485 Serial: Run command from RS485 interface. Keypad STOP is disab̄led. 3_Com Card: Run command from communications card. This does not include CANopen card. 4_Ext HOA in Auto: Run command from digital input [IO-21~28] set to HOA AŪTO (when HOA is in Auto position).

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Bus } \end{aligned}$	AR	Display Name	Range	Description
SET-09	0009	N	Hand Speed Ref	0_Keypad 1_RS485 Serial 2_AVII Analog 3_ACI Analog 4_AVI2 Analog 5_Com Card	Source of speed reference when in Hand mode. 0_Keypad input. 1_RS-485 Interface 2, 3, 4_Analog input from BMS, PLC, Potentiometer or other control device. 5_Communications card control. When in Hand mode, PID is disabled.
SET-10	0010	N	Hand Run Cmd	0_Keypad 1_Digital Input 2_RS485 Serial 3_Com Card 4_Ext HOA in Hand	Source of Run Command in Hand mode. 0_Keypad: Run command from Start/Stop button. 1_Digital Input: Run command from digital input [IO-21~28] set to FWD or $\overline{R E V}$. If direction is set here, then dedicated FWD input is disabled. Keypad STOP is disabled. 2_RS485 Serial: Run command from RS485 interface. Keypad STOP is disab̄led. 3_Com Card: Run command from communications card. This does not include CANopen card. 4_Ext HOA in Hand: Run command from digital input [IO-21~28] set to HOA HĀND (when HOA is in Hand position).
SET-11	0011	Y	Accel Time	0 to 6000.0 Sec	Time in seconds for the drive to accelerate from OHz to maximum frequency. Default depends on Application [SET-00] and VFD HP rating.
SET-12	0012	Y	Decel Time	0 to 6000.0 Sec	When Stop Mode is set to Decelerate, time in seconds to slow down from maximum frequency to 0 Hz . Default depends on Application [SET-00] and VFD HP rating.
SET-13	0013	Y	Low Freq Limit	0.0 to SET-14 (Hz)	The lowest frequency (speed) allowable. If speed control falls below setting, motor will continue to run at this limit.
SET-14	0014	N	High Freq Limit	SET-13 to VFD-00 (Hz)	The highest frequency (speed) allowable. If speed control signal goes higher, motor will continue to run at this limit.
SET-15	0015	N	Load Rotation	$\begin{aligned} & \text { 0_FWD \& REV } \\ & \text { 1_FWD Only } \\ & \text { 2_REV Only } \end{aligned}$	Allows the motor to run in the forward and reverse direction. Setting it to a specific direction can prevent injury or damage to equipment.
SET-16	0016	N	Stop Mode	$\begin{aligned} & \text { 0_Decel to stop } \\ & \text { 1_Coast to stop } \\ & \text { 2_DC Brake } \end{aligned}$	Determines how the motor is stopped when a STOP command is initiated. 0 _Decel to stop: VFD decelerates frequency to zero frequency and then stops. 1_Coast to stop: VFD stops producing output instantly and motor spins down freely until it stops. 2_DC Brake: The VFD will inject DC current to the motor windings during deceleration after a stop command is received and the output frequency is below VFD-40 setting. DC injection brake provides a faster stop for the motor, but it generates heat in the motor winding and depending on settings in parameters VFD-37~39 and braking duty cycle the motor can be overheated.
SET-17	0017	N	PID Mode	0 Disable 1_PID Direct 2_PID Inverse	PID control allows the VFD to maintain a process value (pressure, temperature etc.) by varying the output frequency based on the difference between a set point and actual feedback value. 1_Direct: Output decreases if feedback becomes greater than a set-point. 2_Inverted: Output increases if feedback becomes greater than a set-point.
SET-18	0018	N	PID F/B Source	$\begin{aligned} & \text { 0_ACI } \\ & \text { 1_AVII } \\ & \text { 2_AVI2 } \end{aligned}$	Selects an analog input terminal for PID Feedback source.

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Rus } \end{aligned}$	AR	Display Name	Range	Description
SET-19	0019	N	PID F/B Unit		Measurement unit selection for feedback signal.
SET-20	0020	N	PID F/B Max	0.0 to 32767	PID feedback transducer maximum range
SET-21	0021	Y	PID Set-point	0.0 to SET-20 (SET-19 Unit)	Set the desired value for PID (pressure, temperature, GPM, etc.).
SET-22	0022	Y	PID Lo Hz Limit	SET-13 to SET-23 (Hz)	Low frequency limit in PID mode. PID Low Frequency is limited by Low Frequency [SET-13] and PID High Frequency [SET-23].
SET-23	0023	N	PID Hi Hz Limit	SET-22 to SET-14 (Hz)	High frequency limit in PID mode. PID High Frequency is limited by High Frequency [SET-14] and PID Low Frequency [SET-22].
SET-24	0024	Y	PID P-Gain	0 to 100\%	Proportional-Gain determines PID control sensitivity. Greater values provide more sensitivity. However, if set too high, the system may create an output frequency oscillation and instability. Used along with PID I-TIme [SET-25] to smooth and balance system response.
SET-25	0025	Y	PID I Time	0.0 to 100 Sec	Integral-Time determines PID response time. Lower values increase system response to the feedback signal, which reduces overshoot, but may cause system oscillation if set too low. Greater values provide slower response, which may cause overshoot of the setpoint and oscillation of output frequency.
SET-26	0026	Y	Sleep Mode	0_Disabled 1_Sleep Only 2_Sleep+Boost	Sleep Mode selection for pressure controlled systems, such as pumping applications. Sleep+Boost increases the process control value (pressure) before going to sleep.
SET-27	0027	Y	Sleep Chk Time	5 to 120 Sec	Time delay (sleep check cycle time) before each Sleep Check process.
SET-28	0028	Y	Sleep Delay	0 to 3000 sec	Delay before VFD triggers Sleep Mode state when all other conditions are met.
SET-29	0029	Y	S-Boost Value	0 to 10\%	Value added to original setpoint to provide a pressure boost before entering sleep.
SET-30	0030	Y	S-Boost Timer	5 to 120 Sec	Limits duration of sleep boost operation if Sleep Boost set-point is not reached.
SET-31	0031	Y	Wake-Up Level	0.0 to SET-21 (SET-19 Unit)	Sets a wakeup level for VFD to exit Sleep mode and start running.
SET-32	0032	Y	S-Bump Timer	5 to 120 Sec	Sets a duration time for pressure bump to increase system pressure.
SET-33	0033	Y	Pipe Fill Timer	0.0 to 60 Min	Pipe Fill mode exit timer to switch to PID mode. If set to 0.0 min, pipe fill is disabled.
SET-34	0034	Y	P-Fill Exit LvI	0.0 to SET-21 (SET-19 Unit)	If feedback reaches [SET-34] value, VFD will switch from pipe fill mode to PID control mode.
SET-35	0035	Y	Pipe Fill Freq	SET-22 to SET-23 (Hz)	VFD will vary the output frequency from [ADV2-68] to [SET-35] trying to maintain 60% of [SET-34] value.
SET-36	0036	Y	Broken Pipe Lvl	0.0 to SET-21 (PSI)	If VFD runs above [SET-37] frequency for [SET-38] delay with system pressure below [SET-36], it will trip on Broken Pipe fault. If [SET-36] is set to 0 , this protection will be disabled.
SET-37	0037	Y	Broken Pipe Frq	SET-22 to SET-23 (Hz)	If VFD is running above this speed with pressure below [SET-36], Broken Pipe Delay timer starts.
SET-38	0038	Y	Broken Pipe Dly	0 to 6000 Sec	If Broken Pipe Delay timer runs longer than this setting, VFD trips on Broken Pipe fault.
SET-39	0039	Y	OverPress Set	$\begin{aligned} & \text { 0_Disabled } \\ & \text { 1_OP Trip } \\ & \text { 2_OP Auto Reset } \end{aligned}$	Overpressure protection settings OP Trip: When tripped on overpressure, VFD will require a reset. OP Auto Reset: Auto Restart occurs when pressure drops below [SET-31] Wake-up Level.

CODE	$\begin{gathered} \text { Mod } \\ \text { Bus } \end{gathered}$	AR	Display Name	Range	Description
SET-40	0040	Y	OverPress Level	0.0 to SET-20 (SET-19 Unit)	Level the process signal (pressure) reaches to cause an overpressure condition.
SET-41	0041	N	ULD Select	0_Disabled 1_By Current 2_By Torque	Underload Detection protects against conditions such as a dry well, broken pump, or broken drive belt. Refer to "Underload Protection (Dry Well or Belt Loss)" on page 95.
SET-42	0042	Y	ULD Level	15 to 115\%	Underload Level set as a percentage of FLA(SFA). If current is below this level and frequency is above ULD Frequency [SET-43] for longer than ULD Delay [SET-44] timer, VFD will trip on ULD.
SET-43	0043	Y	ULD Frequency	SET-22 to SET-23 (Hz)	If motor runs above ULD Frequency, VFD compares operating current with ULD Level [SET-42] to detect a ULD condition.
SET-44	0044	Y	ULD Delay	0 to 360 Sec	Underload Delay timer before trip.
SET-45	0045	Y	ULD Recovery T	0 to 720 Min	Underload Recovery TIme. VFD will restart from ULD trip after this time. If it trips again, time will be doubled up to 720 min . If set to 0 , fault must be manually reset.
SET-46	0046	N	ULD Recover Cnt	0 to 720 Min	Decrementing counter of recovery time from an ULD trip before VFD attempts to restart motor (Read Only).
SET-47	0047	N	HLD Select	0_Disabled 1_By Current 2_By Torque	High Load Detection protects the VFD and motor against damage from an over-torque condition. Refer to "High Load Detection" on page 94.
SET-48	0048	Y	HLD Level	75 to 200\%	High Load Detection level, set as a percentage of FLA(SFA). If current is above this level and frequency is above HLD Frequency [SET-49] for longer than HLD Delay [SET-50] timer, VFD will trip on HLD.
SET-49	0049	Y	HLD Frequency	SET-22 to SET-23 (Hz)	If motor runs above HLD Frequency, VFD compares operating current with HLD Level [SET-48] to detect an HLD condition.
SET-50	0050	Y	HLD Delay	0 to 360 Sec	High Load Delay timer before trip.
SET-51	0051	Y	HLD Recovery T	0 to 720 Min	High Load Recovery Time. VFD will restart from HLD trip after this time. If it immediately trips again, time will be doubled up to 720 min . If set to 0 , fault must be manually reset.
SET-52	0052	Y	HLD Recover Cnt	0 to 720 Min	Decrementing counter of recovery time from a HLD trip before VFD attempts to restart motor (Read Only).
SET-53	0053	Y	ACC Change Freq	0.0 to SET-14 (Hz)	Frequency to switch from main accel/decel rate to second accel/decel rate.
SET-54	0054	Y	Second ACC	0 to 6000 Sec	Time in seconds for drive to accelerate from 0 Hz to maximum frequency. Second acceleration occurs when frequency is above ACC Change Freq [SET-53]. For example, submersibles have to be accelerated up to 30 hz in 1 second but they can accelerate from 30 hz to 60 hz much slower. So, we would adjust SET-53 to 30hz and the drive would follow the SET-11 ACC time up to 30 hz and the SET-54 ACC time above 30 hz .
SET-55	0055	Y	Second DEC	0 to 6000 Sec	When Stop Mode is set to Decelerate, time in seconds to slow down from maximum frequency to 0 Hz . Second deceleration occurs when frequency is above ACC Change Freq [SET-53]. VFD returns to main DEC time when frequency is below [SET-53]-[SET-56]
SET-56	0056	Y	ACC/DEC Hyster	0.0 to SET-53 (Hz)	When 2nd ACC/DEC time is activated and frequency drops below [SET-53]-[SET-56], VFD will switch to main ACC/DEC time.
SET-57	0057	Y	Display Line 1	0_Freq Command 1_Output Frequency 2_Multi-Fn Display 3_Output Current	Sets the parameter to display on the first line of keypad. NOTE: Power-cycle the drive or detach/retach keypad for display to update.

CODE	$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
SET-58	0058	Y	Display Line 3	0_Output Current (A) 1_Counter value (c) 2_Output Freq (H) 3_DC-Bus Voltage (u) 4_Output Voltage (E) 5_Output Power (P) 6_Motor Speed (r) 7_PID Feedback \% (b) 8_AVII Value (1) 9_ACl Value (2) 10_AVI2 Value (3) 11_IGBT Temp ${ }^{\circ} \mathrm{C}$ (i) 12 CAP Temp ${ }^{\circ} \mathrm{C}$ (c) 13_D-Inputs Status (i) 14_D-Out Status (0) 15_Ground FIt Lvl (G) 16_DC Bus Ripple (r) 17_PLC Data D1043 (C) 18_Fan Speed (F) 19_VFD Status (6) 20_kWh Display (J) 21_PID Set-point (L) 22_Aux Analog Input 23_Commu Role 24-This VFD Status 25_Pump Role 26-Network Status 27_Session Status 28_Active VFD Num 29_Active Lag Num 30_Active Stdby Num	Sets the parameter to display on third line of keypad. The new selection will be shown when VFD power is cycled or keypad is disconnected and reconnected again.
SET-59	0059	Y	Keypad Frea	0.0 to VFD-00 (Hz)	The keypad frequency setting.
SET-60	0060	Y	HOA Mode Source	0_Keypad 1_Digital Input 2_RS485 Serial 3_Com Card	Sets the input that selects between Hand-Off-Auto modes
SET-61	0061	N	KPD STOP as OFF	0_Disable 1_Enable	When enabled, the Stop key acts as an OFF position on keypad HOA and will stop the VFD in all Hand and Auto Run CMD modes except an External HOA. When VFD is stopped by Stop key, to return to Auto or Hand mode press the Hand or Auto key.
SET-62	0062	N	Carrier Freq	2.0 to 15.0 kHz Varies by VFD rating	VFD switching frequency. Higher frequencies create more precise wave forms, but generate higher heat. Lower frequencies run cooler, but could potentially cause audible noise, which can be eliminated by adjusting this carrier frequency during stop.
SET-63	0063	N	2/3-Wire Select	$\begin{aligned} & \text { 0_2-Wire Fwd/Rev } \\ & \text { 1_2-Wire Fwd+Rev } \\ & \text { 2_3-Wire F+R+Stop } \end{aligned}$	0_FWD input provides forward run command and REV input provides a reverse run command. VFD ignores the command if both inputs are activated. 1_FWD input provides forward run command and REV input changes the rotation. 2_FWD input provides forward run command, REV input changes the rotation, and Stop stops the drive

Parameter Descriptions > VFD Menu

AR = Adjustable while Running.

CODE	$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
VFD-00	0256	N	VFD Max Freq	0 to 599 Hz	The highest frequency (speed) allowable when running a motor. If running a FE MagForce pump, this should be set to the calculated slip frequency corresponding to the target pump RPM. Refer to "Setup FE MagForce Pump Motor" on page 100.
VFD-01	0257	N	VFD Start Freq	0 to 10 Hz	Frequency the VFD initially starts to output.
VFD-02	0258	N	VFD Base Freq	3 to 599 Hz	Set to the motor nameplate frequency rating. VFD provides full output voltage at this frequency.
VFD-03	0259	N	V/F Pattern	0_Linear 1_1.5 Power 2_Squared 3_V/F Curve 1 4_V/F Curve 2 5_V/F Curve 3 6_V/F Curve 4 7_V/F Curve 5 8-V/F Curve 6 9_V/F Curve 7 10_V/F Curve 8 11_V/F Curve 9 12_V/F Curve 10 13_V/F Curve 11 14_V/F Curve 12 15_V/F Curve 13	$0: \mathrm{V} / \mathrm{F}$ curve determined by VFD-60-65 1: V/F curve to the power of 1.5 2: V / F curve to the power of 2 (square). 3: 60 Hz , full voltage at 50 Hz 4: 72 Hz , full voltage at 60 Hz 5: 50 Hz , decrease gradually with cube 6: 50 Hz , decrease gradually with square 7: 60 Hz , decrease gradually with cube 8: 60 Hz , decrease gradually with square 9: 50 Hz , medium starting torque $10: 50 \mathrm{~Hz}$, high starting torque 11: 60 Hz , medium starting torque 12: 60 Hz , high starting torque 13: 90 Hz , full voltage at 60 Hz 14: 120 Hz , full voltage at 60 Hz 15: 180 Hz , full voltage at 60 Hz
VFD-04	0260	Y	Step Freq-1	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-05	0261	Y	Step Freq-2	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-06	0262	Y	Step Freq-3	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-07	0263	Y	Step Freq-4	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-08	0264	Y	Step Freq-5	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-09	0265	Y	Step Freq-6	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-10	0266	Y	Step Freq-7	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-11	0267	Y	Step Freq-8	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-12	0268	Y	Step Freq-9	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-13	0269	Y	Step Freq-10	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-14	0270	Y	Step Freq-11	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-15	0271	Y	Step Freq-12	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-16	0272	Y	Step Freq-13	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-17	0273	Y	Step Freq-14	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-18	0274	Y	Step Freq-15	0.0 to SET-14 (Hz)	Preset Frequency command determined by digital inputs.
VFD-19	0275	Y	ACC-2 Time	0.0 to 6000 Sec	VFD will switch to ACC/DEC2 when DI set to XCEL-L is activated.
VFD-20	0276	Y	DEC-2 Time	0.0 to 6000 Sec	VFD will switch to ACC/DEC2 when DI set to XCEL-L is activated.
VFD-21	0277	Y	ACC-3 Time	0.0 to 6000 Sec	VFD will switch to ACC/DEC3 when DI set to XCEL-M is activated.
VFD-22	0278	Y	DEC-3 Time	0.0 to 6000 Sec	VFD will switch to ACC/DEC3 when DI set to XCEL-M is activated.

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Bus } \end{aligned}$	AR	Display Name	Range	Description
VFD-23	0279	Y	ACC-4 Time	0.0 to 6000 Sec	VFD will switch to ACC/DEC4 when DIs set to XCEL-L and XCEL-M are activated. NOTE: Do not overlap skip frequency ranges.
VFD-24	0280	Y	DEC-4 Time	0.0 to 6000 Sec	VFD will switch to ACC/DEC4 when DIs set to XCEL-L and XCEL-M are activated.
VFD-25	0281	Y	S Start Time 1	0.0 to (variable) Sec	ACC S-Curve Start starting Time-1
VFD-26	0282	Y	S Start Time 2	0.0 to (variable) Sec	ACC S-Curve Start ending Time-2
VFD-27	0283	Y	S End Time 1	0.0 to (variable) Sec	DEC S-Curve End starting Time-1
VFD-28	0284	Y	S End Time 2	0.0 to (variable) Sec	DEC S-Curve End ending Time-2
VFD-29	0285	N	Skip Freq1 High	0.0 to 599 Hz	Used to bypass mechanical system resonance frequencies. If the received speed reference is in the skip zone, VFD will run at Low Skip Freq until speed reference is at or above High Skip Freq. Then, speed will be ramped up based on acceleration time.
VFD-30	0286	N	Skip Freq1 Low	0.0 to 599 Hz	Low frequency in skip zone 1.
VFD-31	0287	N	Skip Freq2 High	0.0 to 599 Hz	High frequency in skip zone 2.
VFD-32	0288	N	Skip Freq2 Low	0.0 to 599 Hz	Low frequency in skip zone 2.
VFD-33	0289	N	Skip Frea3 High	0.0 to 599 Hz	High frequency in skip zone 3.
VFD-34	0290	N	Skip Freq3 Low	0.0 to 599 Hz	Low frequency in skip zone 3.
VFD-35	0291	N	VFD Duty Select	0_Variable Torque 1_Constant Torque	```0_Variable Torque (Light Duty) 1_Constant Torque (Normal Duty) VFD Rated Amps [VFD-47] and Over-Current levels [PROT-07-08] are affected by this setting.```
VFD-36	0292	Y	Reset Restart	0 _Disable 1_Enable	The VFD will automatically initiate operation once fault is cleared and run command is received.
VFD-37	0293	Y	DC Brake CurLvl	0.0 to 100\%	Level of DC Brake Current output to the motor during start-up and stopping.
VFD-38	0294	Y	DC Time at Run	0.0 to 60 Sec	Duration of the DC Brake current after a run command to apply DC current to motor to force stop motor for a stable start.
VFD-39	0295	Y	DC Time at Stop	0.0 to 60 Sec	Duration of the DC Brake current after a stop command to apply DC current to the motor inorder to force stop the motor.
VFD-40	0296	Y	DC Stop Freq	0.0 to SET-23 (Hz)	Frequency when DC Brake will begin during deceleration.
VFD-41	0297	Y	Dwell T at Acc	0.0 to 600 Sec	When output frequency reaches [VFD-42] during acceleration, VFD will hold output at [VFD-42] for [VFD-41] timer duration. When timer expires, VFD will continue acceleration.
VFD-42	0297	Y	Dwell Hz at Acc	0.0 to SET-23 (Hz)	VFD holds output frequency at [VFD-42] during Dwell Timer
VFD-43	0299	Y	Dwell T at Dec	0.0 to 600 Sec	When output frequency reaches [VFD-44] during acceleration, VFD will hold output at [VFD-44] for [VFD-43] timer duration. When timer expires, VFD will continue deceleration.
VFD-44	0300	Y	Dwell Hz at Dec	0.0 to SET-23 (Hz)	VFD holds output frequency at [VFD-44] during Dwell Timer

CODE	Mod Bus	AR	Display Name	Range	Description
VFD-45	0301	Y	Hopping Carrier	$\begin{aligned} & \text { 0_Disable } \\ & \text { 1_Enable } \end{aligned}$	When enabled, VFD will automatically change carrier frequency from 2 to 5 kHz (Depends on the drive frame size) in a predetermined offset pattern to minimize audible noise from the motor. [VFD-58] determines a duration of each frequency segment.
VFD-46	0302	N	ID Code	0 None 4_1 HP (0.75 kW), 230 V 5_1 HP (0.75 kW), 460 V $6 _2 \mathrm{HP}(1.5 \mathrm{~kW}), 230 \mathrm{~V}$ 7_2 HP (1.5kW), 460V 8_3 HP (2.2kW), 230V 9-3HP (2.2kW), 460V 10_5 HP (3.7kW), 230V 11 - 5 HP (3.7kW), 460V 12 7.5 HP (5.5kW), 230V 13 _7.5 HP (5.5kW), 460V 14_10 HP (7.5kW), 230V 15_10 HP (7.5kW), 460V 16_15 HP (11kW), 230V 17_15 HP (11kW), 460V 18_20 HP (15kW), 230V 19 _20 HP (15kW), 460V 20_25 HP (18.5kW), 230V 21_25 HP (18.5kW), 460V 22_30 HP (22kW), 230V 23_30 HP (22kW), 460V 24_40 HP (30kW), 230V 25_40 HP (30kW), 460V 26_50 HP (37kW), 230V 27_50 HP (37kW), 460V 28_60 HP (45kW), 230V 29_60 HP (45kW), 460V 30_75 HP (55kW), 230V 31_75 HP (55kW), 460V 32 _100 HP (75 kW), 230V 33_100 HP (75kW), 460V 34_125 HP (90kW), 230V 35_125 HP (90kW), 460V 37_150 HP (110kW), 460V 39_175 HP (132kW), 460V 41_215 HP (160kW), 460V $4 \overline{3} 250 \mathrm{HP}(185 \mathrm{~kW}), 460 \mathrm{~V}$ $45-300 \mathrm{HP}(220 \mathrm{~kW}), 460 \mathrm{~V}$ 47_375 HP (280kW), 460V 49_425 HP (315kW), 460V 51_475 HP (355kW), 460V 53_536 HP (400kW), 460V 55_600 HP (450kW), 460V 57 _675 HP (500kW), 460V 59_750HP (560kW), 460V 61_850HP (630kW), 460V $90 _4 \mathrm{HP}(3.0 \mathrm{~kW}), 230 \mathrm{~V}$ 91_4 HP (3.0kW), 460V 92_5.5 HP (4.0kW), 230V 93_5.5 HP (4.0kW), 460V 505_2.0HP (1.5kW), 575V 506_3.0HP (2.2kW), 575V 507_5.0HP (3.7kW), 575V 508_7.5HP (5.5kW), 575V 509_10HP (7.5kW), 575V 510_15HP (11kW), 575V 511 _20HP (15kW), 575V 612_25HP (18.5kW), 690V 613 _30HP (22kW), 690V 614_40HP (30kW), 690V 615_50HP (37kW), 690V 616_60HP (45kW), 690V 617-75HP (55kW), 690V 618_100HP (75kW), 690V 619_125HP (90kW), 690V 622_215HP (160kW), 690V	Displays the identity code of the VFD (Read Only).

CODE	$\begin{array}{\|l\|l\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
$\begin{aligned} & \text { VFD-46 } \\ & \text { (Cont.) } \end{aligned}$	0302	N	ID Code	$6264425 \mathrm{HP}(315 \mathrm{~kW}), 690 \mathrm{~V}$ $628-536 \mathrm{HP}(400 \mathrm{~kW}), 690 \mathrm{~V}$ $629600 \mathrm{HP}(450 \mathrm{~kW}), 690 \mathrm{~V}$ $6311745 \mathrm{HP}(560 \mathrm{~kW}) 690 \mathrm{~V}$ $632840 \mathrm{HP}(630 \mathrm{~kW}), 690 \mathrm{~V}$ $686265 \mathrm{HP}(200 \mathrm{~kW}), 690 \mathrm{~V}$ $687-333 \mathrm{HP}(250 \mathrm{~kW}), 690 \mathrm{~V}$	Displays the identity code of the VFD (Read Only).
VFD-47	0303	N	VFD Rated Amps	(Variable)	Current rating of drive with respect to Light Duty and Normal Duty [VFD35] (Read Only).
VFD-49	0305	N	Firmware Version	(Variable)	VFD software version (Read Only).
VFD-50	0306	Y	Disp Filter A	0.001 to 65.535 Sec	Minimizes the current fluctuation displayed by digital keypad.
VFD-51	0307	Y	Disp Filter KPD	0.001 to 65.5335 Sec	Minimizes the display value fluctuation displayed by digital keypad.
VFD-52	0308	N	FW Date	(Variable)	VFD software version date (Read Only).
VFD-53	0309	Y	JOG ACC Time	0.0 to (variable) Sec	Acceleration time in jog operation to increase frequency to jog frequency.
VFD-54	0310	Y	JOG DEC Time	0.0 to (variable) Sec	Deceleration time in jog operation to decrease frequency to OHz.
VFD-55	0311	Y	JOG Frequency	0.0 to 600 Hz	Frequency commanded for jog operation.
VFD-56	0312	N	Zero-speed Mode	0_Standby 1_Hold by DC Brake 2_Min Frequency	When commanded frequency is less than frequency min: Standby: VFD stays at OHz. Hold by DC Brake: apply DC Brake by minimium voltage Frequency Min: VFD runs motor at minimium frequency.
VFD-57	0313	Y	Power-on Start	$\begin{aligned} & \text { 0_Disable } \\ & \text { 1_Enable } \end{aligned}$	When enabled, the VFD will automatically initiate operation after poweredon with run command.
VFD-58	0314	Y	H-Carrier Pitch	2 to 100 ms	A time setting for duration of each frequency segment in Hopping Carrier cycle.
VFD-60	0316	N	V/F F-Point 1	Variable (Hz)	Custom V/F curve 1st frequency point.
VFD-61	0317	N	V/F V-Point 1	Variable (V)	Custom V/F curve 1st voltage point.
VFD-62	0318	N	V/F F-Point 2	Variable (Hz)	Custom V/F curve 2nd frequency point.
VFD-63	0319	N	V/F V-Point 2	Variable (V)	Custom V/F curve 2nd voltage point.
VFD-64	0320	N	V/F F-Point 3	Variable (Hz)	Custom V/F curve 3rd frequency point.
VFD-65	0321	N	V/F V-Point 3	Variable (V)	Custom V/F curve 3rd voltage point.

Parameter Descriptions > I/O Menu

AR = Adjustable while running.

CODE	Mod Bus	AR	Display Name	Range	Description

CODE	$\begin{array}{\|l\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
10-05	0517	Y	AVII Input Sel	$\begin{aligned} & 0 _0-10 \mathrm{~V} \\ & 1-0-20 \mathrm{~mA} \\ & 2-4-20 \mathrm{~mA} \\ & 3-\mathrm{PTC} \\ & \text { 4_PT100 \& AFM2 } \\ & 5 _2-10 \mathrm{~V} \end{aligned}$	Selects the format of the input signal expected at the ACI input terminals based on the type of control device to be connected-transducer, sensor, controller, etc. This setting must correspond with AVI1 micro switch.
10-06	0518	Y	AVII Loss Trip	0_Disable 1_Hold Speed 2_Stop/Start 3_Trip Stop 4_At AI Loss Freq	Selects operation when AVII signal is lost. 1_VFD runs at previous speed (2 sec before signal loss) 2_VFD will restart when signal is restored 3_VFD will stay tripped until reset 4_VFD runs at frequency set in [IO-76]
10-07	0519	Y	AVI1 Loss Lvl	$\begin{aligned} & \text { 0_Below Minimum } \\ & \text { 1_Below 0.5xMin } \\ & \text { 2_Redundant } \end{aligned}$	Selects level for determining AVI1 signal loss.
10-08	0520	Y	AVI1 Loss Delay	0 to 3600 Sec	Duration the AVII signal is in a loss condition before initiating an AVII Loss Trip operation.
10-09	0521	Y	AVII Filter T	0.00-20.00 Sec	AVII time filter for noisy analog signal. The delay time helps buffer interference that could cause error in the signal input. Longer times improve signal confirmation, but the response time is delayed.
10-10	0522	Y	AVI2 Filter T	0.00-20.00 Sec	AVI2 time filter for noisy analog signal. The delay time helps buffer interference that could cause error in the signal input. Longer times improve signal confirmation, but the response time is delayed.
10-11	0523	N	Spare Max Value	0 to 60000	Maximum range of spare transducer
10-12	0524	N	Spare Al Select	$\begin{aligned} & \text { 0_AVII } \\ & \text { 1_ACI } \\ & \text { 2_AVI2 } \end{aligned}$	Analog input for spare transducer
10-13	0525	Y	F/B PT Status	$\begin{aligned} & \text { 0_Main PT On } \\ & \text { 1_Spare PT On } \end{aligned}$	$\begin{aligned} & \text { F/B PT Status is Feedback Pressure Transducer Status. } \\ & \text { 0_Main PT On: Main pressure transducer provides feedback reading } \\ & \text { 1_Spare PT On: Spare pressure transducer is providing feedback reading } \end{aligned}$
10-14	0526	Y	PID Filter Time	0.1 to 300.0 Sec	PID feedback signal time filter for noisy analog signal. The delay time helps buffer interference that could cause error in the signal input. Longer times improve signal confirmation, but the response time is delayed.
10-15	0527	Y	PID Delay Time	0.0-35.0 Sec	Time delay for frequency command.
10-16	0528	Y	Limit by Level	0_Disable 1_Enable	When enabled, VFD will monitor analog input set as Auto mode speed reference or PID F/B source and it will decrease High Frequency Limit value.
10-17	0529	Y	Max Limit Level	0.0 to 20.0 mA	Sets Aux Analog input maximum value (in Aux Input units) corresponding to VFD or PID High Frequency limit.
10-18	0530	Y	Min Limit Level	0.0 to 20.0 mA	Sets Minimum value of Aux Analog input corresponding to IO-19 Minimum Value of High Frequency limit.
10-19	0531	Y	Min Freq Limit	0.0 to High Freq Limit [SET14] for V/F control 0.0 to PID Hi Hz limit [SET23] for PID control	Sets Minimum value for High Frequency Limiting range corresponding to 10-18 signal level.
10-20	0532	Y	DI Filter	0.000 to 30.000 Sec	Response time of digital input terminals MII~MI8. The delay time helps buffer interference that could cause error in the signal input. Longer times improve signal confirmation, but the response time is delayed.

CODE	$\begin{array}{\|l\|l\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
10-21	0533	Y	M11 Define	0_No Function 1_Speed-L 2_Speed-M 3_Speed-H 4_Speed-X 5-Fault Reset 6-Jog Speed 7-Hold Speed 8-XCEL-L 9-XCEL-M 10_Ext. Trip 11_3-Wire Stop 12_AVII Analog Spd 13_ACI Analog Spd 14_AVI2 Analog Spd 16_Up 17_Down 18_PID Disable 19_CLR CNT 20_Input CNT (MI6) 21_FWD Jog 22_REV Jog 25_E-Stop 26_HOA-HAND 27_HOA-AUTO 28_Drive Enabled 29_PLC mode bit 0 30_PLC mode bit 1 32_FO with RUN Cmd 33_FO w/o RUN Cmd 34_Damper Limit Sw 35_Shutdown N-Latch 36_Shutdown Latched 37_Flow Switch 38_FWD 39_REV 40_Aux Motor-1 OFF 41_Aux Motor-2 OFF 42_Aux Motor-3 OFF 43_Aux Motor-4 OFF 44_Aux Motor-5 OFF 45_Aux Motor-6 OFF 46_Aux Motor-7 OFF 47_All Aux Mtr Off 48_Set-Point-A 49_Set-Point-B	MI1 Default = Speed-L 1_Multi-step speed command 1 2_Multi-step speed command 2 3_Multi-step speed command 3 4-Multi-step speed command 4 5_Use to reset fault after cause is corrected 6_Changes speed in jog mode to value set in VFD-55 7-When active, VFD will hold current speed 8_ACC/DEC time will be changed to VFD-19 and VFD-20 9-ACC/DEC time will be changed to VFD-21 and VFD-22 10 Trips VFD by external protective device and requires reset 11_Stop input for 3-Wire control, MII by default 12-In non-PID mode, changes speed reference to AVI1 13-In non-PID mode, changes speed reference to ACI 14_In non-PID mode, changes speed reference to AVI2 16 -Increases speed reference when SET-07 is set to (1) 17_Decreases speed reference when SET-07 is set to (1) 18_Disables PID and switches speed reference to keypad 19_Clears pulse counter accumulated value (MI6 only) 20_Pulse counter input (MI6 only) 21_Jog Command Forward 22_Jog Command Reverse 25_VFD stops by Emergency Stop device (requires reset) 26_External HOA Hand position contact 27_External HOA Auto position contact 28_Enables and disables the drive (not a run command) 29_PLC Function Disable 29 and 30=(0) or Run 29= (1) 30- PLC Function Disable 29 and 30=(0) or Stop 30= (1) 32_VFD will start in FO Mode by FO DI and Run Command 33_VFD will start in FO Mode by FO DI (No Run Command) 34_When damper is closed, Damper LSW DI is activated 35_Activates Shutdown. When inactive, VFD operates normally 36_Activates Shutdown. Requires reset to operate normally 37_Detects water or air flow by Flow Switch 38_Provides an option to replace the dedicated FWD input 39_Provides an option to replace the dedicated REV input 40_Aux Motor-1 in MMC mode is off sequence 41_Aux Motor-2 in MMC mode is off sequence 42_Aux Motor-3 in MMC mode is off sequence 43_Aux Motor-4 in MMC mode is off sequence 44_Aux Motor-5 in MMC mode is off sequence 45_Aux Motor- 6 in MMC mode is off sequence 46_Aux Motor-7 in MMC mode is off sequence 47_All Aux Motors in MMC mode are off sequence 48_Preset Set-Point-A for PID control 49_Preset Set-Point-B for PID. (If 48 and 49 ON=S-point-AB)
10-22	0534	Y	MI2 Define	See [I0-21]	MI2 Default = Preset Speed-M
10-23	0535	Y	MI3 Define	See [I0-21]	MI3 Default = Preset Speed-H
10-24	0536	Y	MI4 Define	See [I0-21]	MI4 Default = Fault Reset
10-25	0537	Y	M15 Define	See [I0-21]	M15 Default = Emergency Stop
10-26	0538	Y	MI6 Define	See [IO-21]	MI6 Default = XCEL-L (ACC-2/ DEC-2 Time)
10-27	0539	Y	M17 Define	See [I0-21]	No Funciton
10-28	0540	Y	MI8 Define	See [I0-21]	No Funciton
10-29	0541	N	FO Enable	$\begin{aligned} & \text { 0_Disable } \\ & \text { 1_FWD Operation } \\ & \text { 2_REV Operation } \end{aligned}$	Enables Fireman's Override mode in either forward or reverse.
10-30	0542	Y	FO Frequency	SET-13 to SET-14 (Hz)	Preset frequency for non-PID Fireman's Override mode.
10-31	0543	Y	FO Fault Retry	0 to 10	Number of auto-retries during fault in Fireman's Override mode
10-32	0544	Y	FO Retry Delay	0 to 6000 Sec	Delay of auto-retries during fault in Fireman's Override mode

CODE	$\begin{array}{\|l\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
10-33	0545	N	F0 Mode \& Reset	0_PID Off Manual 1_PID Off Auto 2-PID On Manual 3_PID On Auto	Sets control method and reset method for Fireman's Override mode. For example, (1)-FO mode no-PID and auto return to normal operation.
10-34	0546	Y	FO PID S-Point	0 to 100\%	PID Setpoint in Fireman's Override mode (when I0-33 is 2 or 3)
10-35	0547	Y	Ext. Trip Mode	$\begin{aligned} & \text { 0_Coast to stop } \\ & \text { 1_Decel Stop } \end{aligned}$	Determines how the motor is stopped when an Emergency STOP or External Trip command is initiated. Coast to stop: VFD stops the output instantly and motor free runs until it comes to a complete standstill. Decel to stop: VFD decelerates frequency to minimum output frequency and then stops.
10-36	0548	Y	Damper Mode	$\begin{aligned} & \text { 0_Disable } \\ & \text { 1_Enable } \end{aligned}$	Enables damper control feature, requires to set relay output to Damper Output
10-37	0549	Y	Damper T-Delay	0 to 6000 Sec	Provides a run time delay without a damper limit switch; or, provides a Damper Fault delay for systems that include a damper limit switch. The delay should be greater than damper opening time.
10-38	0550	Y	No-Flow Mode	$\begin{aligned} & \text { 0_Disabled } \\ & \text { 1_Trip } \\ & \text { 2_Sleep } \end{aligned}$	The VFD can monitor a system flow switch to provide pump protection and more reliable sleep mode operation. If any digital input is set to Flow Switch in parameters I/0-21~28 and VFD runs longer than time set in IO-39 at frequency above setting in IO-40 with open Flow Switch, VFD will trip on No Flow fault.
10-39	0551	Y	Prime Time	1 to 6000 Sec	Duration motor runs until No Flow or Underload protection becomes active.
10-40	0552	Y	No-Flow Frea	0.0 to (variable) Hz	0.0 to High Freq Limit [SET-14] for V/F control 0.0 to PID Hi Hz limit [SET-23] for PID control
10-41	0553	Y	Lube/S-Clean	$\begin{aligned} & \text { 0_Disabled } \\ & \text { 1_Lubrication } \\ & \text { 2_Screen Clean } \end{aligned}$	Select Lubrication for machines requiring external lubrication control via solenoid or Screen Clean for actuating a solenoid to clear the suction screen.
10-42	0554	Y	S-Clean Timer	0.0-600.0 Min	Determines a time period before next 1-minute cleaning pulse.
10-43	0555	Y	Pre-Lube Timer	0 to 6000 Sec	Determines Pre-lubrication time before VFD starts.
10-44	0556	Y	Run-Lube Timer	0 to 6000 Sec	Lube relay will be activated at VFD start (run state) and after timer expires it will be deactivated.
10-45	0557	Y	Post-Lube Timer	0 to 6000 Sec	Lube relay is activated and post-lube timer starts when VFD stops (reaches 0.00 Hz) whether it coasts to stop or decelerates.
10-46	0558	Y	DI NO/NC	0000h - FFFFh	Sets the digital inputs numbered in hex format to either N.O. or N.C. configuration. The configuration is in binary format Bit0, Bit1, Bit2, etc. corresponding to FWD, REV, DI1, DI2, etc. from the right to the left. Empty box indicates that Relay is N.O. and solid box that it is N.C. Example below shows Hex value=2 and solid box (N.C. contact configuration) for Bit1 DI (Rev). If contact wired to DI Rev is open, DI is activated. When contact is closed, DI will be deactivated.

CODE	$\begin{gathered} \text { Mod } \\ \text { Bus } \end{gathered}$	AR	Display Name	Range	Description
10-47	0559	Y	Relay RA1	0_No Function 1_Run 2-FDT-1 3 FDT-2 4_FDT-3 5_FDT-4 6-FDT-5 7_Drive Ready 8_Fault 9-VFD Overheat 10_DC Brake 11_PID F/B Loss 12_Counter Done 13-Pre-Count Done 14_Alarm 15-FWD CMD 16_REV CMD 17-Analog Trigger 19_Overcurrent 2 20_High Load 21_Under Load 22-Fireman 0-ride 23_Bypass 24_Motor-1 Out 25-Motor-2 Out 26_Motor-3 Out 27-Motor-4 Out 28-Motor-5 Out 29_Motor-6 Out 30_Motor-7 Out 31-Pipe Leak 32_Preheat Output 33_Steady 34_Pre-PID 35_Sleep 36_Speed Search 37-Pipe Broken 38_Damper Output 39_Aux Timer Out 40_Overpressure 41_Lube/S Clean 42_ACI Loss 43_AVII Loss 44_Hand Mode 45_Auto Mode 47_MMC Out 48-Jockey Pump 49_At High Current 50_At Low Current	RA1 Default = Fault 1_During Run Mode 2-When frequency reference value is achieved 3-On above [10-52] freq and Off below [10-52]-[10-53] freq 4_On above [10-54] freq and Off below [10-54]+[10-55] freq 5-On up to FDT-4/5 frea 6-On above FDT-4/5 freq 7-When drive is powered and ready (no faults) 8-When drive has tripped on any fault 9-When VFD temperature reaches trip level 10_When DC injection brake is activated 11_When PID feedback source signal value is abnormal 12-When pulse counter achieves the counter set-value 13-When pulse counter achieves pre-count value 14_When alarm is triggered by any alarm condition 15-When VFD operates in Forward direction 16_ When VFD operates in Reverse direction 17-When analog signal reaches a trigger level 19-When VFD trips on Overcurrent 2 20_HLD triggered 21_ULD triggered 22-When Fireman's Override mode is activated 23_When drive switches from Soft-Start mode to Bypass 24 -When Motor-1 is enabled in MMC control 25-When Motor-2 is enabled in MMC control 26-When Motor-3 is enabled in MMC control 27_When Motor-4 is enabled in MMC control 28-When Motor-5 is enabled in MMC control 29-When Motor-6 is enabled in MMC control 30_When Motor-7 is enabled in MMC control 31_Pipe Leak protection is triggered 32_VFD provides Motor Preheat output 33_VFD provides steady freq output 34_VFD is in Pipe Fill mode 35_VFD is in Sleep mode 36^{-}VFD is in Speed Search mode 37-Pipe Broken protection is triggered 38_When Damper motor output is activated 39-Auxiliary timer output 40_Overpressure is triggered 41_When Lube or Screen Clean solenoid output is activated 42_When ACl analog input signal loss is detected 43_When AVII analog input signal loss is detected 44_When VFD control is in Hand mode 45-When VFD control is in Auto mode 47_Aux motor start output in MMC control 48_Jockey pump start output 49_When current reaches High Current trigger level 50_When current is below Low Current trigger level
10-48	0560	Y	Relay RA2	See [10-47]	RA2 Default = Run
10-49	0561	Y	Relay RA3	See [IO-47]	RA3 Default = FDT-4
10-50	0562	Y	CNT Attained 0	0 to 65500	Active increment counter triggered by M16 when IO-26 is set to 20 : Input CNT. After completion of counting, the relay output becomes active if IO47,48, or 49 is set to 13:PreCount Done. The relay becomes active for 1 msec . The counter then returns to 0 . When the display shows c5555, the drive has counted 5,555 times. If display shows c5555*, it means that real counter value is between 55,550 to 55,559 .
10-51	0563	Y	CNT Attained 1	0 to 65500	Increment counter triggered by M16 when IO-26 is set to 20:Input CNT. After completion of counting, the relay output becomes active if $10-47,48$, or 49 is set to 12:Count Done. The relay stays active for same number of counts then becomes inactive. The cycle then repeats.
10-52	0564	Y	FDT-2 Frequency	0.0 to 600 Hz	Relay is activated when during ACC frequency is above [IO-52]. Relay will be deactivated when frequency is below [10-52]-[10-53].

CODE	$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
10-53	0565	Y	FDT-2 Bandwidth	0.0 to 600 Hz	This is the hysteresis value to deactivate the relay.
10-54	0566	Y	FDT-3 Frequency	0.0 to 600 Hz	VFD will activate a selected relay during acceleration between frequencies [I0-54]+0.5Hz and [10-54]+[I0-55]. VFD will activate relay during deceleration between frequencies [10-54]+[10-55]-0.5 Hz and [10-54].
10-55	0567	Y	FDT-3 Bandwidth	0.0 to 600 Hz	Bandwidth for relay activation points
10-56	0568	Y	I Hi/Lo Setting	0 to 150\%	When any relay is set to (49) At High Current in 10-47~49 and motor current is at or above I0-56 set level (\% of FLA), corresponding relay will be activated. When any relay is set to (50) At Low Current in 10-47~49 and motor current is below I0-56 set level (\% of FLA), corresponding relay will be activated
10-57	0569	Y	FDT-4/5 Setting	0.0 to 60 Hz	Frequency setting for FDT-4 and FDT-5 functions. With FDT-4, relay is activated at frequencies below [10-57]. With FDT-5, relay is activated at frequencies above [10-57].
10-58	0570	Y	Relay NO/NC	0000h - FFFFh	Sets the relay outputs numbered in hex format to either N.O. or N.C. configuration. The configuration is in binary format Bit0, Bit1, Bit2, etc. corresponding to RA1, RA2, etc. from right to left. Empty box indicates that Relay is N.O. and solid box that it is N.C. Example below shows solid box (N.C. contact configuration) for Bit0 DO (RA1). The physical N.O. contact of RA1 relay is always closed (relay is activated) until the selected function in I0-47~49 is activated, then contact will be open.
10-59	0571	Y	AFM1 Out Select	0_Output FREQ 1_Output AMP (rms) 2_Output Voltage 3_DC Bus Voltage 4_Power Factor 5_Power 6_AVII \% 7_ACI \% 8_AVI2 \% 9_Constant Output	Defines functionality of Analog Output 1 (AFM1).
10-60	0572	Y	AFM1 Gain	0 to 500\%	Adjusts the analog voltage level output of AFM1.
10-61	0573	Y	AFM2 Out Select	See [10-59]	Defines functionality of Analog Output 2 (AFM2).
10-62	0574	Y	AFM2 Gain	0 to 500\%	Adjusts the analog voltage level output of AFM2.
10-63	0575	Y	AFM1 mA Select	0_0-20mA output 1_4-20mA output	Selects current range of AFM1 output.
10-64	0576	Y	AFM2 mA Select	0_0-20mA output 1_4-20mA output	Selects current range of AFM2 output.
10-65	0577	Y	AFM1 Filter Time	0.00 to 20.00 Sec	Noise filtering of AFM1 output.
10-66	0578	Y	AFM2 Filter Time	0.00 to 20.00 Sec	Noise filtering of AFM2 output.
10-72	0584	Y	FO Bypass	$\begin{aligned} & \text { 0_Disable } \\ & \text { 1_Enable } \end{aligned}$	Enables Bypass for Fireman's Override mode
10-73	0585	Y	FO Bypass Delay	0 to 6550 Sec	Time delay to switch to Fireman's Override bypass

PARAMETER REFERENCE TABLES
 Parameter Descriptions > ADV Menu

CODE	$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
10-74	0586	N	D-Inputs State	0000h - FFFFh	Displays status of digital inputs numbered in hex format. The input status is in binary format. Empty box indicates that N.O. DI is deactivated and solid box that it is activated. It shows DIs FWD, REV, DII, DI2... status from the right to the left Bit $0=1, B i t 1=2$, Bit3=4, Bit $4=8, B i t 5=16$, etc. Example below shows hex value=5 and solid boxes (activated) for Bit0 (value=1) DI (FWD) and Bit2 (value=4) DI (DII). The contacts wired to those inputs should be closed to deactivate input and open to activate it.
10-75	0587	N	D-Relays Status	0000h - FFFFh	Displays status of digital outputs (DOs) numbered in hex format. The output status is in binary format. Empty box indicates that output Relay is deactivated and solid box that it is activated. It shows DOs RA1, RA2... status from the right to the left Bit0, Bit1, Bit2, Bit3, etc. Example below shows hex value $=1$ and solid box (activated) for Bit0 (RA1). The N.O. contact of RA1 relay is closed until selected function is activated.
10-76	0588	Y	Al Loss Freq	Freq Low Limit to Freq High Limit	When 10-01 or 10-06 is set to 4_At AI Loss Freq and signal loss is detected, VFD will run at [10-76] Frequency.

Parameter Descriptions > ADV Menu

> AR = Adjustable while running.

CODE	Mod Bus	AR	Display Name	Range	Description
ADV-00	0768	Y	Upper Bound Int	0 to 100\%	Upper limit for the integral gain (I), which limits the output frequency. Upper Limit Freq = VFD Max Freq Main [VFD-00] x Upper Bound Int [ADV$00]$. Too large integral value will cause a slow response at sudden load changes, and this could cause motor stall or machine damage.
ADV-01	0769	Y	PID Out Limit	0 to 110\%	Maximum PID command limit. Percentage of Maximum Output Frequency [VFD-00].
ADV-02	0770	Y	Password Input	0 to 65535	Password protect from modifying parameters.
ADV-03	0771	N	Parameter Reset	0_No Function 1_Write protect 2 -------- 3-Reset KWH 4_Reset all Param 5_Reset M Run Time	Select stored data to be reset or enable Write protection.

CODE	$\begin{array}{\|l\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
ADV-05	0773	Y	Password Lock	0_Unlocked 1_Locked	When setting password protection for the first time, set password in Password Input [ADV-02] and then Password Lock [ADV-05] becomes 1Locked. To permanently disable password protection, unlock parameters by entering password in Password Input [ADV-02] and then set Password Lock [ADV-05] to 0-Unlocked. If drive is unlocked by a password and password lock is not set to 0-Unlocked, the next reboot of the VFD will lock the VFD again.
ADV-06	0774	Y	Acc/Dec Type	0_Linear Acc/Dec 1-Auto Acc/L-Dec 2_L-Acc/Auto Dec 3_Auto Acc/Dec 4_Lin, Auto Stall	Provides automated acceleration and deceleration with stall prevention. 0 Linear Acc/Dec: Accelerates and decelerates according to the setting of SETT-11~12 and VFD-19-24. 1_Auto Acc/L-Dec: Auto detects the load torque and accelerates for the fastest acceleration time and smoothest start current. Deceleration is linear according to setting of SET-11-12 and VFD-19-24. 2 L-Acc/Auto Dec: Linear acceleration according to setting SET-11~12 and VFD-19-24. Auto detects the load re-generation and stops the motor smoothly with the fastest decel time. 3_Auto Acc /Dec: Auto detects load for smoothest operation for acceleration and deceleration. 4_Lin, Auto Stall: Stall prevention by auto accel./decel being limited by SET11~12 and VFD-19~24.
ADV-07	0775	N	Acc/Dec Format	$\begin{aligned} & \text { 0_Unit } 0.01 \mathrm{Sec} \\ & \text { 1_Unit } 0.1 \mathrm{Sec} \end{aligned}$	Precision of acceleration and deceleration time
ADV-08	0776	Y	Energy Saving	$\begin{aligned} & \text { 0_Disabled } \\ & \text { 1_Enabled } \end{aligned}$	When the output frequency is constant, the output voltage will auto decrease to decrease power consumption.
ADV-09	0777	Y	E-Saving Gain	10 to 1000\%	Determines speed of adjusting output voltage in relationship to load reduction. If the motor oscillates or has a quick temperature rise, the value should be increased.
ADV-10	0778	N	MMC Mode	0_Disabled 1_Equal Run Time 2_Soft Start mode 3_Lead-Lag 4_Run Time Alt 5-Rotate Lead	Type of operation for Multi-Motor Control. 3_Lead-Lag is the most common multi-pump control mode.
ADV-11	0779	N	Motor Quantity	1 (default) to 7	Number of motors in MMC relay control setup. Limit is 3 without I/O card. When I/O card is installed, selections 1-7 are available.
ADV-12	0780	N	Aux Mtr Stop Hz	0 to SET-23	When output frequency is less than value and remains for duration of ADV15, motors will be shut down one by one.
ADV-13	0781	N	Alt Run Time	0 to 60000 Min	Duration of running a motor before switching to another motor.
ADV-14	0782	N	S-Start ON Dly	0 to 3600 Sec	Delay time before switching motor from VFD to power line.
ADV-15	0783	N	S-Start Off Dly	0 to 3600 Sec	Delay time before switching motor from power line to VFD.
ADV-16	0784	Y	Mtr Switch Tmr	0 to 3600 Sec	When timer expires, the system will start preparing to switch motors.
ADV-17	0785	Y	Mtr Switch Hz	SET-22 to SET-23 (Hz)	When the output frequency reaches value, the system will start preparing to switch motors.
ADV-18	0786	Y	Lag Start Frea	ADV-23 to SET-23	Running above ADV-18 frequency is one of the conditions for starting Lag pump. Lag Start Frequency parameter is used for ADV-10 selection (3) Lead-Lag MMC control. Default= 59.50 Hz .
ADV-19	0787	Y	Lag Start Delay	0 to 600 Sec	Sets a delay time to start Lag pump when both frequency and pressure conditions are met.
ADV-20	0788	Y	Lag Start Level	0.1 to 10\%	Sets percentage of [SET-20 PID F/B Max] value to determine [MMC Below Setpoint] level for Lag pump starting. ADV-20 parameter is used for ADV-10 selection (3) Lead-Lag MMC control.
ADV-21	0789	Y	Lead Freq Drop	0.0 to SET-23 (Hz)	PID High Frequency Limit drop value with ADV-22 Decel Time at Lag pump start to prevent system overpressure condition. ADV-21 parameter is used for ADV-10 selection (3) Lead-Lag MMC control.
ADV-22	0790	Y	MMC Decel Time	0 to 600 Sec	Sets deceleration time for PID High Frequency limit value change from [SET-23 PID High Freq Limit] to [SET-23 PID High Freq Limit]-[ADV-21] at Lag pump start. ADV-22 parameter is used for ADV-10 selection (3) LeadLag MMC control.

PARAMETER REFERENCE TABLES
 Parameter Descriptions > ADV Menu

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Bus } \end{aligned}$	AR	Display Name	Range	Description
ADV-23	0791	Y	Lag Stop Freq	SET-22 to ADV-18 (Hz)	Running below ADV-23 frequency is one of the conditions for stopping Lag pump. This parameter is used for ADV-10 selection (3) Lead-Lag MMC control.
ADV-24	0792	Y	Lag Stop Delay	0 to 600 Sec	Sets delay time to stop Lag pump when both frequency and pressure. ADV24 parameter is used for ADV-10 selection (3) Lead-Lag MMC control.
ADV-25	0793	Y	Lag Stop Level	0.1 to ADV-20 (\%)	Sets percentage value of [SET-20 PID F/B Max] value to determine [MMC At Setpoint] level for Lag pump stopping. ADV-25 parameter is used for ADV10 selection (3) Lead-Lag MMC control.
ADV-26	0794	Y	Lead Freq Bump	0.0 to (SET-23)* 0.4 Hz	PID Low Freq Limit increase value with ADV-27 Accel Time at Lag pump stop to prevent system underpressure condition. ADV-26 parameter is used for ADV-10 selection (3) Lead-Lag MMC control.
ADV-27	0795	Y	MMC Accel Time	0 to 600 Sec	Sets acceleration time for PID Low Frequency limit value change from [SET22 PID Low Freq Limit] to [SET-22 PID Low Freq Limit]+[ADV-26] at Lag pump stop.
ADV-28	0796	Y	Power-On Delay	0 to 6000 Sec	This timer provides run delay at VFD power-up with run command present to prevent multiple starts during power surges.
ADV-29	0797	Y	Run Delay Timer	0 to 6000 Sec	This timer provides a delay at every VFD start when run command is applied. Timer starts before every VFD start by run command, auto-restarts, fault reset, sleep wake-up, etc. FO (Fire Override) mode will disable this timer.
ADV-30	0798	Y	Backspin Timer	0 to 6000 Sec	Duration after stop state that the drive disables output. Protects drive from motor backspinning due to column of water backflowing through pump.
ADV-31	0799	Y	Aux Timer Type	0_On-Delay 1_Off-Delay 2_One-Pulse 3_On-Pulser 4_Off-Pulser	Activates relay output based on selected Aux Timer input source and Timer Type. Aux Timer will be enabled when any digital output is set to Aux Timer Out. 0_On-Delay: When selected timer input is activated, the timer output relay will be activated when timer expires. It will stay activated until Aux Timer input is deactivated. This is the default setting. 1_Off-Delay: When selected timer input is activated, the Aux Timer output will be activated. When Aux Timer input is deactivated, the timer will start counting and its output will be activated when timer expires. 2_One-Pulse (on rising edge): When selected timer input is activated, the Aux Timer output will be activated for duration of the Aux Timer whether input is still active or not. 3_On-Pulser: When Aux Timer input is activated, the timer output will be activated for duration of Aux Timer. Then timer output will be deactivated for Aux Timer duration. Then timer output will be activated for Aux Timer duration again. Aux Timer will provide symmetrical pulses until its input is deactivated. 4_Off-Pulser: When Aux Timer input is activated, the timer output will stay inactive for duration of Aux Timer. Then timer output will be activated for Aux Timer duration. Then timer output will be deactivated for Aux Timer duration again. Aux Timer will provide symmetrical pulses until its input is deactivated. NOTE: Aux Timer does not use DI NO/NC settings.
ADV-32	0800	Y	Aux Timer Time	0 to 6000 Sec	Active or Inactive duration of relay.
ADV-33	0801	Y	Aux Timer Input	0_D-Input MII 1_D-Input MI2 2_D-Input MI3 3_D-Input MI4 4_D-Input MI5 5_D-Input MI6 6_D-Input MI7 7_D-Input MI8 8-D-Output R1 9-D-Output R2 10 D-Output R3 11 FWD DI 12_REV DI	Selects source to initiate Aux Timer operation. Default is FWD DI (11).
ADV-34	0802	Y	Min Run Timer	0 to 6000 Sec	Once drive starts motor, the motor continuously runs for this length of time even though a stop command is present.

CODE	$\begin{array}{\|l\|} \hline \text { Mod } \\ \hline \end{array}$	AR	Display Name	Range	Description
ADV-35	0803	N	Multi-VFD Set	$\begin{aligned} & 0 \text { _Single VFD } \\ & 1 _2 \text { VFDs } \\ & 2 _3 \text { VFDs } \\ & 3-4 \text { VFDs } \\ & 4 _5 \text { VFDs } \\ & 5-6 \text { VFDs } \\ & 6-7 \text { VFDs } \\ & 7 _8 \text { VFDs } \end{aligned}$	This setting defines the number of drives in the system, including Lead, Lag, Standby, and Jockey.
ADV-36	0804	N	Standby Pumps	0 to 6	Defines the number of Standby pumps/drives that will be assigned. The maximum entry is equal to the total number of drives less the Master and less the Jockey (if enabled).
ADV-37	0805	N	Multi-VFD ID	0_VFD-1 1_VFD-2 2_VFD-3 3-VFD-4 4_VFD-5 5_VFD-6 6_VFD-7 7_VFD-8	This setting is used to assign a unique identification number (VFD 1-8) to each drive in the system. IDs must be sequential without gaps. The Master will only recognize numbers up to the Multi-VFD Set [ADV-35] total. If a Jockey is used, it must be assigned to the highest ID.
ADV-38	0806	Y	VLag Start Freq	0.0 to High Frea Limit [SET22] V/F control 0.0 to PID Hi Hz limit [SET23] for PID control	When Lead is running at a higher frequency than VLag Start Freq [ADV-38] and Master pressure is less than 95% of Setpoint for the duration of VLag Start Dly [ADV-39], then Master will command the next Lag drive to start. The values of these settings on the Master are used and not the other drives. However, because the Master could change, the best practice is to set all drives the same.
ADV-39	0807	Y	VLag Start Dly	0 to 600 Sec	Duration pressure below 95\% of Setpoint before starting next lag drive.
ADV-40	0808	Y	VLag Stop Frea	0.0 to High Frea Limit [SET- 22] V/F control 0.0 to PID Hi Hz limit [SET- 23] for PID control	When Lead is running at a lower frequency than [ADV-40] and Master pressure is greater than 98% of Setpoint for the duration of VLag Stop Dly [ADV-41], then Master will command the last Lag drive to stop. The values of these settings on the Master are used and not the other drives.
ADV-41	0809	Y	VLag Stop Delay	0 to 600 Sec	Duration pressure above 98\% of Setpoint before stopping last lag drive.
ADV-42	0810	N	VLead/Lag ID	0_Lead 1_Lag-1 2_Lag-2 3_Lag-3 4_Lag-4 5_Lag-5 6_Lag-6 7_Lag-7 8 Standby-1 9-Standby-2 10_Standby-3 11_Standby-4 12_Standby-5 13_Standby-6 14_Jockey	This value identifies the role of each drive in the network (Lead, Lag \#, Standby \#, Jockey, or Skip) and is assigned by the Master (Read Only). Skip removes the VFD from Multi-VFD control sequence but it can still work as Master if ADV-47 is set to 0.
ADV-43	0811	N	VLag Spd Source	$\begin{aligned} & \text { 0_PID } \\ & \text { 1_Lag Set Freq } \end{aligned}$	For each drive, this setting determines whether the drive will use PID mode or Lag Set Frequency when assigned as a Lag.
ADV-44	0812	Y	VLag Set Freq	0.0 to High Freq Limit [SET-22] V/F control 0.0 to PID Hi Hz limit [SET-23] for PID control	Frequency the drive will use if running as a Lag with Lag Speed [ADV-43] set to Lag Set Frequency.
ADV-45	0813	N	Alternation	0_Disable 1_Timer 2_Master Power-Up	On the Master, this setting determines if and how the Lead role will be rotated through the network. If enabled, the Lead can be alternated either at a set time interval, or whenever the Master power is cycled.
ADV-46	0814	Y	Alternate TMR	0 to 600 Hr	On the Master, this setting determines the length of time before the Lead alternates if [ADV-45] is set to Timer. NOTE: When Alternation Timer is set to 0.0 hrs , the system alternates every 1 minute.
ADV-47	0815	N	Set VFD Ready	0_Ready 1_Skip it	For each drive, this setting determines whether or not the drive is available to function as a Master.

PARAMETER REFERENCE TABLES
 Parameter Descriptions > ADV Menu

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Bus } \end{aligned}$	AR	Display Name	Range	Description
ADV-48	0816	N	Jockey Mode	$\begin{aligned} & \text { O_Disable } \\ & \text { 1_Enable } \end{aligned}$	This setting enables or disables the Jockey feature.
ADV-49	0817	Y	J-Start Press	SET-21 to SET-21	Pressure setpoint for jockey start when all other conditions have been met.
ADV-50	0818	Y	J-Start Freq	SET-22 to SET-23	Jockey starts when main pump is running above this frequency and all other conditions have been met.
ADV-51	0819	Y	Main Stop Freq	SET-22 to SET-23	Main pump will stop if it runs below this frequency. Jockey will continue to run until pressure settings have been met.
ADV-52	0820	Y	J-Start Delay	1 to 65535 Sec	Time delay before jockey starts when all conditions have been met.
ADV-53	0821	Y	Main Stp Delay	1 to 65535 Sec	Time delay before main pump stops when all conditions have been met.
ADV-55	0823	Y	AVR Select	0_Enable AVR 1_Disable AVR 2_Disable AVR Dec	Auto Voltage Regulation automatically regulates the drive output voltage to the motor rated voltage.
ADV-56	0824	N	Prog-1 Setting	0_None 1_VFD Run 2-Step Freq 1 3-Step Freq 2 4_Step Freq 3 5-S-Point-A 6-S-Point-B 7_S-Point-AB	Sets Program \#1 operation to Run/Stop control, Speed, or Set-point.
ADV-57	0825	N	Prog-1 On Time	0 to 2400	Program \#1 activation of Run/Stop control, Speed, or Set-point.
ADV-58	0826	N	Prog-1 Off Time	0 to 2400	Program \#1 deactivation of Run/Stop control, Speed, or Set-point.
ADV-59	0827	N	Prog-1 Week Day	0000h to 007Fh	Day(s) of the week for Program \#1 to operate. Binary day representation SMTWTFS = 127 (007FH in Hexadecimal).
ADV-60	0828	N	Prog-2 Setting	See [ADV-56]	Sets Program \#2operation to Run/Stop control, Speed, or Set-point.
ADV-61	0829	N	Prog-2 On Time	0 to 2400	Program \#2 activation of Run/Stop control, Speed, or Set-point.
ADV-62	0830	N	Prog-2 Off Time	0 to 2400	Program \#2 deactivation of Run/Stop control, Speed, or Set-point.
ADV-63	0831	N	Prog-2 Week Day	0000h to 007Fh	Day(s) of the week for Program \#2 to operate. Binary day representation SMTWTFS $=127$ (007FH in Hexadecimal).
ADV-64	0832	N	Prog-3 Setting	See [ADV-56]	Sets Program \#3 operation to Run/Stop control, Speed, or Set-point.
ADV-65	0833	N	Prog-3 On Time	0 to 2400	Program \#3 activation of Run/Stop control, Speed, or Set-point.
ADV-66	0834	N	Prog-3 Off Time	0 to 2400	Program \#3 deactivation of Run/Stop control, Speed, or Set-point.
ADV-67	0835	N	Prog-3 Week Day	0000h to 007Fh	Day(s) of the week for Program \#3 to operate. Binary day representation SMTWTFS = 127 (007FH in Hexadecimal).
ADV-68	0836	N	Prog-4 Setting	See [ADV-56]	Sets Program \#4 operation to Run/Stop control, Speed, or Set-point.
ADV-69	0837	N	Prog-4 On Time	0 to 2400	Program \#4 activation of Run/Stop control, Speed, or Set-point.
ADV-70	0838	N	Prog-4 Off Time	0 to 2400	Program \#4 deactivation of Run/Stop control, Speed, or Set-point.
ADV-71	0839	N	Prog-4 Week Day	0000h to 007Fh	Day(s) of the week for Program \#4 to operate. Binary day representation SMTWTFS = 127 (007FH in Hexadecimal).
ADV-74	0842	Y	S-Point-A	0 to SET-20	Preset Set-point-A can be activated by DI set to 48_Set-point-A or in Scheduling program.
ADV-75	0843	Y	S-Point-B	0 to SET-20	Preset Set-point-B can be activated by DI set to 49_Set-point-B or in Scheduling program.
ADV-76	0844	Y	S-Point-AB	0 to SET-20	Preset Set-point-AB can be activated by both Dls set to 48_Set-point-A and 49_Set-point-B or in Scheduling program.

Parameter Descriptions > Protection Menu

AR = Adjustable while running.

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Bus } \end{aligned}$	AR	Display Name	Range	Description
PROT-00	1024	N	Decel Method	O_Normal 1_Over Fluxing 2_Traction Energy	0_VFD follows SET-12 Deceleration time 1_VFD prevents DC bus Over voltage by over-fluxing the motor at PROT-14 voltage. The Decel time can be longer than SET-12 value. 2_VFD prevents DC Bus Over voltage by changing output frequency and voltage. The Decel time can be longer than SET-12 value.
PROT-01	1025	Y	Preheat Level	0 to 100\%	Percentage of nominal current applied to the motor as DC voltage to heat the VFD and motor. Slowly increase the percentage to reach the sufficient preheating temperature.
PROT-02	1026	Y	Preheat Duty	0 to 100\%	Sets output current cycle of preheating, which corresponds to 0-10 seconds. 0\% - no output current 50\% - 5 seconds OFF and 5 seconds ON 100\% - continuous output current
PROT-03	1027	Y	LV Level	(Varies with VFD rating)	Sets the Low Voltage (Lv) level. Recommended setting is motor voltage minus 10%. If incoming power varies too much, the setting may need to be 15% less than motor voltage. If DC bus voltage drops to Lv level, the VFD stops output to the motor with motor free run to stop. If fault occurs during acceleration, deceleration, constant speed, or stop, then fault indication is LvA, Lvd, Lvn, and LvS, respectively. Manual reset is required. To enable auto restart after a momentary power loss, consult PROT-37 and PROT-38 for VFD handling of fault. The hysteresis recovery level is based on VFD frame size and VFD voltage rating.
PROT-04	1028	Y	OV Stall level	(Varies with VFD rating)	Set Over-Voltage Stall Level. If braking unit or braking resistor is connected, set level to 0 to disable.
PROT-05	1029	Y	OV Stall Prevent	0_Standard 1_Advanced	Set Over-Voltage Stall Prevention operation. 0:Standard - Frequency maintains during deceleration. 1:Advanced - Frequency increases during acceleration, deceleration, or constant speed.
PROT-06	1030	Y	SW Brake V LvI	(Variable)	Sets the DC-bus voltage at which the DC Brake is activated. Defaults are based on VFD Rating.
PROT-07	1031	Y	OCA Level	0 to 130\%	Set Over-Current during Acceleration level. Value is based on VFD's rated current and selection of VFD-35 for Light Duty or Normal Duty.
PROT-08	1032	Y	OCN Level	0 to 130\%	Set Over-Current during Operation level. Value is based on VFD's rated current and selection of VFD-35 for Light Duty or Normal Duty.
PROT-09	1033	Y	Auto Timer Cntr	0 to 60000	If VFD does not trip during this timer, VFD will reset the counter of number of auto restarts.
PROT-10	1034	Y	Auto Restarts	0 to 10	Number of auto restart attempts after fault. When VFD trips on a fault, the counter will decrement by one and the PROT-11 timer will start. When the timer expires, VFD will start the motor again. If the fault occurs again, this cycle repeats until the counter equals zero, at which point reset is required. If the VFD starts and continues to run for 10 minutes, the restart counter will stay at the current value. If the VFD continues to run without fault for six hours, the counter will reset. Shutdown will override Restart.
PROT-11	1035	Y	AutoRetry Delay	10 to 6000 sec	Time delay before VFD attempts restart after fault. FO Mode overrides Retry Delay. When FO is activated, current fault, retry delay, and restart counter will be reset. If Run command is removed with timer active, timer will finish and fault will be reset.
PROT-12	1036	Y	OL-2 Type	0_Disable 1_Alarm at Speed 2_Trip at Speed 3_Alarm at Run 4_Trip at Run	Select Overload Detection operation. Setting 1 and 2 protects from Overload once VFD reaches constant speed. Setting 3 and 4 protects from Overload throughout run of the motor.
PROT-13	1037	Y	OL-2 Level	10 to 200\%	Set Overload Detection level with respect to the rated current of the VFD.

CODE	$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
PROT-14	1038	Y	OL-2 Delay	0.0 to 60 Sec	Duration output current exceeds the overload detection level causing an Overload condition. The hysteresis for the Overload condition is 5% of detection level.
PROT-15	1039	Y	OCA/OCN ACC/DEC	$\begin{aligned} & \text { 0_ACC/DEC-1 } \\ & \text { 1_ACC/DEC-2 } \\ & \text { 2_ACC/DEC-3 } \\ & \text { 3_ACC/DEC-4 } \end{aligned}$	When over-current condition OCA or OCN is detected, VFD will change ACC/DEC rate to selected rate.
PROT-16	1040	Y	ETH Type	$\begin{aligned} & \text { 0_Disable } \\ & \text { 1_Self-Cooled } \\ & \text { 2_Force-Cooled } \\ & \hline \end{aligned}$	Set type of motor for Electronic Thermal Relay protection. For 1:SelfCooled, the motor rated current percentage level is 40% at 0 Hz and linear increases to 100% at motor rated frequency.
PROT-17	1041	Y	ETH Delay	30 to 600 Sec	Sets time the output current is higher than 150% before tripping on electronic thermal overload. The overload level with respect to time is based on I^{2} curve.
PROT-18	1042	Y	OH Warning	0.0 to $110.0^{\circ} \mathrm{C}$	Set Heat Sink Over-heat warning level. When temperature exceeds $110^{\circ} \mathrm{C}$, the drive stops with an IGBT over-heat fault. Cooling fan is activated when temperature reaches 15 C less than value. The cooling fan deactivates for $35^{\circ} \mathrm{C}$ less than value.
PROT-19	1043	Y	PTC/PT100 Sel	0_Alarm and Run 1_Trip Decel Stop 2_Trip Coast Stop 3_Disabled	Set operation when PTC, PT100, or KTY84 exceed level 2.
PROT-20	1044	Y	PTC Level	0.0 to 100.0\%	Set detection level of PTC. The corresponding value for 100% is the analog input maximum value
PROT-21	1045	Y	OPO Trip	0_Alarm and Run 1_Trip Decel Stop 2_Trip Coast Stop 3_Disabled	Select operation for Output Phase Loss.
PROT-22	1046	Y	OPO Delay	0.000 to 65.535 Sec	Duration of output phase loss until operation occurs.
PROT-23	1047	Y	OPO Current	0.00 to 100.00\%	Set level of output phase loss.
PROT-24	1048	Y	OPO Decel	0.000 to 65.535 Sec	DC Brake Time of output phase loss.
PROT-25	1049	Y	LvX Auto Reset	0 _Disable 1_Enable	Set low voltage fault operation to auto reset. Once DC bus voltage returns, the VFD clears fault and restarts motor.
PROT-26	1050	Y	IPO Check Time	0.0 to 600.00 Sec	Set how often to check for input phase loss.
PROT-27	1051	Y	IPO Ripple	(Varies with VFD rating)	An input phase loss is detected when DC bus ripple is higher than IPO Ripple for duration of IPO Check plus 30 seconds.
PROT-28	1052	Y	IPO Trip	0_Alarm and Decel 1_Alarm and Coast	Operation when input phase loss is detected.
PROT-29	1053	Y	Derating Type	$\begin{aligned} & \text { 0_Carrier by I_T } \\ & \text { 1_Limit Current } \\ & \text { 2_Limit Carrier } \end{aligned}$	Set how the VFD derates itself. 0 - Limit the carrier wave to reach max load current and temperature. 1 - Limit the current to use max carrier frequency. 2 - Limit the carrier wave to reach max load current and temperature except when output current is the derating ratio $\times 130 \%$ of output current in light load.
PROT-30	1054	Y	PT100 Level 1	-20.0 to $99.9{ }^{\circ} \mathrm{C}$	Level the PT100 reaches for duration for PT100 L-1 Delay causing drive to back frequency down to PT100 L-1 Freq.
PROT-31	1055	Y	PT100 Level 2	60.1 to $200{ }^{\circ} \mathrm{C}$	Level the PT100 reaches causing PTC Select [PROT-19] operation.
PROT-32	1056	Y	PT100 L-1 Frea	0.0 to 599 Hz	Frequency the VFD reduces to after reaching PT100 Level 1 for duration of PT100 L-1 Delay.
PROT-33	1057	Y	PT100 L-1 Delay	0 to 6000 Sec	Duration PT100 has to be above PT100 Level 1 to cause frequency reduction to PT100 L-1 Freq.
PROT-34	1058	Y	Gnd Fault Level	0.0 to 6553.5\%	Percentage of light-load current that current phase unbalance has to reach for duration of G-Fault Delay [PROT-35] for ground fault to occur.
PROT-35	1059	Y	Gnd Fault Delay	0.0 to 6553.5 Sec	Duration of current phase unbalance for ground fault to occur.
PROT-36	1060	Y	STO Alarm Type	0_STO Latching 1_STO Non-Latch	0 - When VFD triggers STO protection it will require reset. 1- When STO is triggered and then connection restored, VFD will be ready to operate.
PROT-37	1061	Y	IPF S-Search	$\begin{aligned} & \text { 0_Disable } \\ & \text { 1_At Last Freq } \\ & \text { 2_At Min Freq } \end{aligned}$	Speed search treatment after Instantaneous Power Failure (IPF).

CODE	Mod Bus	AR	Display Name	Range	Description

Parameter Descriptions > COMM Menu

AR = Adjustable while running.

CODE	Mod	AR	Display Name	Range	Description
Comm-00	1280	Y	COM1 Address	1 to 254	RS485 address of VFD.
Comm-01	1281	Y	COM1 Speed	4.8 to 115.2 Kbps	RS485 baud rate. All devices on RS485 communication must have the same baud rate.
Comm-02	1282	Y	COM1 Loss	$\begin{aligned} & \text { 0_Alarm and Run } \\ & \text { 1-Trip Decel Stop } \\ & \text { 2-Trip Coast Stop } \\ & \text { 3_Disabled } \end{aligned}$	Select operation when communication is lost.
Comm-03	1283	Y	COM1 Loss Delay	0.0 to 100.0 Sec	Duration of communication loss before initiating operation.

PARAMETER REFERENCE TABLES Parameter Descriptions > COMM Menu

CODE	$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
Comm-04	1284	Y	COM1 Protocol	1_7, N, 2 for ASCII 2_7, E, 1 for ASCII 3-7, 0, 1 for ASCII 4_7, E, 2 for ASCII 5-7, 0, 2 for ASCII 6_8, N, 1 for ASCII 7_8, N, 2 for ASCII 8_8, E, 1 for ASCII 9 8, 0, 1 for ASCII 10_8, E, 2 for ASCII 11_8, 0, 2 for ASCII 12 8, $\mathrm{N}, 1$ for RTU 13_8, N, 2 for RTU 14_8, E, 1 for RTU 15_8, 0, 1 for RTU 16_8, E, 2 for RTU 17_8, 0, 2 for RTU	RS485 Protocol: Data Bits - Parity - Stop Bits - Message Format
Comm-05	1285	Y	Response Delay	0.0 to 200.0 ms	Duration VFD waits before responding to received communication.
Comm-06	1286	N	Main Frequency	0.00 to 599.00 Hz	When Auto Speed Ref [SET-07] is set to RS485 Interface, the last frequency command is stored in this parameter. After rebooting from an abnormal turn-off or momentary power loss, the VFD will continue operation with last frequency. (Read Only)
Comm-07	1287	Y	Block Transf 1	0000h to FFFFh	Block transfer allows selection of a group of parameters for transfer through communication code 03H.
Comm-08	1288	Y	Block Transf 2	0000h to FFFFh	See [Comm-07]
Comm-09	1289	Y	Block Transf 3	0000h to FFFFh	See [Comm-07]
Comm-10	1290	Y	Block Transf 4	0000h to FFFFh	See [Comm-07]
Comm-11	1291	Y	Block Transf 5	0000h to FFFFh	See [Comm-07]
Comm-12	1292	Y	Block Transf 6	0000h to FFFFh	See [Comm-07]
Comm-13	1293	Y	Block Transf 7	0000h to FFFFh	See [Comm-07]
Comm-14	1294	Y	Block Transf 8	0000h to FFFFh	See [Comm-07]
Comm-15	1295	Y	Block Transf 9	0000h to FFFFh	See [Comm-07]
Comm-16	1296	Y	Block Transf 10	0000h to FFFFh	See [Comm-07]
Comm-17	1297	Y	Block Transf 11	0000h to FFFFh	See [Comm-07]
Comm-18	1298	Y	Block Transf 12	0000h to FFFFh	See [Comm-07]
Comm-19	1299	Y	Block Transf 13	0000h to FFFFh	See [Comm-07]
Comm-20	1300	Y	Block Transf 14	0000h to FFFFh	See [Comm-07]
Comm-21	1301	Y	Block Transf 15	0000h to FFFFh	See [Comm-07]
Comm-22	1302	Y	Block Transf 16	0000h to FFFFh	See [Comm-07]
Comm-23	1303	N	Com Decoding	$\begin{aligned} & 0 _20 x x \\ & 1 _60 x x \end{aligned}$	Select address starting range for communication via RS485 and Communication Card.
Comm-24	1304	N	BACnet MAC ID	0 to 127	BACnet address of VFD.
Comm-25	1305	N	BACnet Speed	9.6 to 76.8 Kbps	BACnet baud rate.
Comm-26	1306	N	Device ID Lo	0 to 65535	BACnet Device ID L
Comm-27	1307	N	Device ID Hi	0 to 63	BACnet Device ID H
Comm-28	1308	N	Max Address	0 to 127	BACnet max address.
Comm-29	1309	N	Password	0 to 65535	BACnet password.
Comm-30	1310	N	Com Card ID	0_No Com Card 1_DevNet Slave 2_P-bus DP Slave 3_CANopen S/M 4_Mbus-TCP Slave 5_E-Net/IP Slave 13_FELE BT Card	Identification of installed communication card. (Read Only)
Comm-31	1311	N	Com Card FW	0 to 65535	Firmware version of communication card. (Read Only)
Comm-32	1312	N	Product code	0 to 65535	Part number of communication card. (Read Only)
Comm-33	1313	N	Error code	0 to 65535	Error status of communication card. (Read Only)
Comm-34	1314	Y	D-Net Card Addr	(Variable)	DeviceNet or address of VFD.

PARAMETER REFERENCE TABLES

Parameter Descriptions > COMM Menu

CODE	$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
Comm-35	1315	Y	D-Net Speed	$\begin{aligned} & 0 _125 \mathrm{Kbps} \\ & 1 _250 \mathrm{Kbps} \\ & \text { _-500 Kbps } \\ & \text { 3_1 Mbps } \end{aligned}$	DeviceNet baud rate.
Comm-36	1316	Y	D-Net Type	0_Standard 1_Special	DeviceNet Standard is when D-Net Speed [Comm-35] is set to 125Kbps, 250 Kbps , and 500 Kbps in standard speeds. DeviceNet Special is for other speeds similar to CANopen.
Comm-37	1317	Y	M-bus IP Type	$\begin{aligned} & \text { 0_Static IP } \\ & \text { 1_DHCP } \end{aligned}$	Set the Modbus TCP IP manually with Static IP or automatically by host control with DHCP.
Comm-38	1318	Y	IP Address 1	0 to 65535	First (most significant) octet of IP address. (0-255) XXX.
Comm-39	1319	Y	IP Address 2	0 to 65535	Second octet of IP address. (0-255) ---.XXX.---.---
Comm-40	1320	Y	IP Address 3	0 to 65535	$\begin{aligned} & \text { Third octet of IP address. (0-255) } \\ & ----- \text {.XXX.--- } \end{aligned}$
Comm-41	1321	Y	IP Address 4	0 to 65535	Fourth (least significant) octet of IP address. (0-255) ---.------.XXX
Comm-42	1322	Y	Address Mask 1	0 to 65535	First (most significant) octet of Mask address. (0-255) XXX.---.------
Comm-43	1323	Y	Address Mask 2	0 to 65535	Second octet of Mask address. (0-255) ---.XXX.---.---
Comm-44	1324	Y	Address Mask 3	0 to 65535	Third octet of Mask address. (0-255)
Comm-45	1325	Y	Address Mask 4	0 to 65535	Fourth (least significant) octet of Mask address. (0-255) ---------.XXX
Comm-46	1326	Y	G-way Address 1	0 to 65535	First (most significant) octet of Gateway address. (0-255) XXX.---.------
Comm-47	1327	Y	G-way Address 2	0 to 65535	Second octet of Gateway address. (0-255)
Comm-48	1328	Y	G-way Address 3	0 to 65535	Third octet of Gateway address. (0-255)
Comm-49	1329	Y	G-way Address 4	0 to 65535	Fourth (least significant) octet of Gateway address. (0-255)
Comm-50	1330	Y	MBus TCP Pass L	0 to 99	Communication card password for Modbus TCP (Low word)
Comm-51	1331	Y	MBus TCP Pass H	0 to 99	Communication card password for Modbus TCP (High word)
Comm-52	1332	Y	MBus Card Reset	0 Disable 1_Reset	Sets the communication card to default values for Modbus TCP.
Comm-53	1333	Y	MBus TCP Config	0-65535	Once IP address parameters are set, then set Modbus TCP Config to 1:Internet Parameters to load parameters. Once login password is set, then set Modbus TCP Config to 2:Login Password to load password. 0_None: no function (disabled) 1_IP Filter: Enable IP filter 2_I-net Par On: Enable Internet parameters 3_N/A: blank selection 4_Login Pass: Enable login password
Comm-54	1334	N	MBus TCP Status	0 to 65535	When the communication card is set with a password, this bit is enabled, When the password is cleared, this bit is disabled.
Comm-55	1335	N	SET Comm Card	0 to 65535	Enables an optional Ethernet/IP card, which disables Bluetooth. Set bit 1 to ON to enable the Ethernet card. Set to OFF to disable the card and allow Bluetooth.

Parameter Descriptions > PLC Menu

AR = Adjustable while running.

CODE	Mod Bus	Display Name	Range	Description
PLC-00	1536	Dl used by PLC	0 to 65535	Status of PLC external input terminal.
PLC-01	1537	DO used by PLC	0 to 65535	Status of PLC external output terminal.
PLC-02	1538	Analog by PLC	0 to 65535	Status of PLC external analog output terminals.
PLC-03	1539	PLC Buffer 0	0 to 65535	Used for PLC or HMI programming.
PLC-04	1540	PLC Buffer 1	0 to 65535	Used for PLC or HMI programming.
PLC-05	1541	PLC Buffer 2	0 to 65535	Used for PLC or HMI programming.
PLC-06	1542	PLC Buffer 3	0 to 65535	Used for PLC or HMI programming.
PLC-07	1543	PLC Buffer 4	0 to 65535	Used for PLC or HMI programming.
PLC-08	1544	PLC Buffer 5	0 to 65535	Used for PLC or HMI programming.
PLC-09	1545	PLC Buffer 6	0 to 65535	Used for PLC or HMI programming.
PLC-10	1546	PLC Buffer 7	0 to 65535	Used for PLC or HMI programming.
PLC-11	1547	PLC Buffer 8	0 to 65535	Used for PLC or HMI programming.
PLC-12	1548	PLC Buffer 9	0 to 65535	Used for PLC or HMI programming.
PLC-13	1549	PLC Buffer 10	0 to 65535	Used for PLC or HMI programming.
PLC-14	1550	PLC Buffer 11	0 to 65535	Used for PLC or HMI programming.
PLC-15	1551	PLC Buffer 12	0 to 65535	Used for PLC or HMI programming.
PLC-16	1552	PLC Buffer 13	0 to 65535	Used for PLC or HMI programming.
PLC-17	1553	PLC Buffer 14	0 to 65535	Used for PLC or HMI programming.
PLC-18	1554	PLC Buffer 15	0 to 65535	Used for PLC or HMI programming.
PLC-19	1555	PLC Buffer 16	0 to 65535	Used for PLC or HMI programming.
PLC-20	1556	PLC Buffer 17	0 to 65535	Used for PLC or HMI programming.
PLC-21	1557	PLC Buffer 18	0 to 65535	Used for PLC or HMI programming.
PLC-22	1558	PLC Buffer 19	0 to 65535	Used for PLC or HMI programming.
PLC-23	1559	PLC Com Type	-12 PLC Control -10_Internal Master -8_Internal Slave8 -7-Internal Slave7 -6-Internal Slave6 -5-Internal Slave5 -4_Internal Slave4 -3-Internal Slave3 -2-Internal Slave2 -1_Internal Slave 1 0-Modbus 485 1_BACnet	Setup PLC controller for single VFD or with multiple VFD's. Select communication protocol for com port.
PLC-24	1560	PLC force to 0	0 to 65535	Defines reset value of the frequency command before PLC scans time sequence. Bit0 Before PLC scan, set up PLC target frequency=0 Bit1 Before PLC scan, set up PLC target torque=0. Bit2 Before PLC scan, set up the speed limit of torque control mode=0.
PLC-25	1561	PLC Address	1 to 254	Address of PLC with respect to communication link.

Parameter Descriptions > Option Menu

$A R=$ Adjustable while running.

CODE	$\begin{array}{\|c} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
Option-00	1792	N	M10 Define	0_No Funciton 1_Speed-L 2-Speed-M 3_Speed-H 4_Speed-X 5_Fault Reset 6_Jog Frequency 7-Hold Speed 8-XCEL-L 9-XCEL-M 10 Ext. Trip 11_3-Wire Stop 12_AVII Analog Spd 13_ACI Analog Speed 14_AVI2 Analog Spd 16_Up 17_Down 18_PID Disable 19_CLR CNT 20-Input CNT (M16) 21_FWD Jog 22_REV Jog 25_E-Stop 26-HOA-HAND 27_HOA-AUTO 28_Drive enabled 29-PLC mode bit 0 30_PLC mode bit 1 32 FO with RUN Cmd 33-FO w/o RUN Cmd 34_Damper Limit Sw 35-Shutdown N-Latch 36_Shutdown Latched 37_Flow Switch 38_FWD 39-REV 40_Aux Motor-1 OFF 41-Aux Motor-2 OFF 42_Aux Motor-3 OFF 43_Aux Motor-4 OFF 44_Aux Motor-5 OFF 45_Aux Motor-6 OFF 47_All Aux Mtr OFF 48_S-Point-A 49^{-}S-Point-B	MI1 Default = Speed-L _Multi-step speed command 1 Multi-step speed command 2 3-Multi-step speed command 3 4_Multi-step speed command 4 5_Use to reset fault after cause is corrected 6_Changes speed in jog mode to value set in VFD-55 -When active, VFD will hold current speed 8_ACC/DEC time will be changed to VFD-19 and VFD-20 9_ACC/DEC time will be changed to VFD-21 and VFD-22 10 Trips VFD by external protective device and requires reset 1_Stop input for 3-Wire control. MII2 by default. 2_In non-PID mode, changes speed reference to AVII $13-$ In non-PID mode, changes speed reference to ACl 14-In non-PID mode, changes speed reference to AVI2 16-Increases speed reference when SET-07 is set to (1) 17-Decreases speed reference when SET-07 is set to (1) 18_Disables PID and switches speed reference to keypad 9-Clears pulse counter accumulated value (MI6 only) O_Pulse counter input (MI6 only) 21-Jog Command Forward 2 _-Jog Command Reverse 25-VFD stops by Emergency Stop device (requires reset) 26- External HOA Hand position contact 27-External HOA Auto position contact 28-Enables and disables the drive (not a run command) 29_PLC Function Disable 29 and 30=(0) or Run 29= (1) 30^{-}PLC Function Disable 29 and 30=(0) or Stop 30= (1) 32_VFD will start in FO Mode by FO DI and Run Command 33_VFD will start in FO Mode by FO DI (No Run Command) 34_When damper is closed, Damper LSW DI is activated 35_Activates Shutdown. When inactive, VFD operates normally 36_Activates Shutdown. Requires reset to operate normally 37_Detects water or air flow by Flow Switch 38-Provides an option to replace the dedicated FWD input 39-Provides an option to replace the dedicated REV input 40_Aux Motor-1 in MMC mode is off sequence 41_Aux Motor-2 in MMC mode is off sequence 42_Aux Motor-3 in MMC mode is off sequence 43_Aux Motor-4 in MMC mode is off sequence 44_Aux Motor-5 in MMC mode is off sequence 45_Aux Motor-6 in MMC mode is off sequence 46_Aux Motor-7 in MMC mode is off sequence 47_All Aux Motors in MMC mode are off sequence 48-Preset Set-Point-A for PID control 49_Preset Set-Point-B for PID (If 48 and 49 ON=S-point-AB)
Option-01	1793	N	M11 Define	See [Option-00]	Defines functionality of input M111 on I/O extension card.
Option-02	1794	N	M12 Define	See [Option-00]	Defines functionality of input M112 on I/O extension card.
Option-03	1795	N	M13 Define	See [Option-00]	Defines functionality of input M113 on I/0 extension card.
Option-04	1796	N	M14 Define	See [Option-00]	Defines functionality of input M114 on I/O extension card.
Option-05	1797	N	M15 Define	See [Option-00]	Defines functionality of input M115 on I/0 extension card.

CODE	Mod Bus	AR	Display Name	Range	Description
Option-06	1798	N	Relay exp. RA10	0_No Funciton 1_Run 2_FDT-1 3_FDT-2 4_FDT-3 5-FDT-4 6_FDT-5 7_Drive ready 8 Fault 9-VFD Overheat 10_DC Brake 11_PID F/B Loss 12_Counter Done 13_Pre-Count Done 14_Alarm 15_FWD CMD 16_REV CMD 17_Analog Trigger 19_Overcurrent 2 20_High Load 21_Under Load 22_Fireman 0-ride 23_Bypass 24_Motor-1 Out 25-Motor-2 Out 26_Motor-3 Out 27_Motor-4 Out 28-Motor-5 Out 29_Motor-6 Out 30_Motor-7 Out 31_Pipe Leak 32_Preheat Output 33_Steady 34_Pre-PID 35_Sleep 36_Speed Search 37-Pipe Broken 38_Damper Output 39_Aux Timer Out 40_Overpressure 41_Lube/S-Clean 42_ACI Loss 43_AVII Loss 44_Hand Mode 45_Auto Mode 47_MMC Out 48_Jockey Pump 49_At High Current 50_At Low Current	RA1 Default = Fault 1_During Run Mode 2_When frequency reference value is achieved 3_On above [10-52] freq and Off below [10-52]-[10-53] freq 4_On above [10-54] freq and Off below [10-54]+[10-55] freq 5_On up to FDT-4/5 freq 6_On above FDT-4/5 freq 7_When drive is powered and ready (no faults) 8-When drive has tripped on any fault 9-When VFD temperature reaches trip level 10_When DC injection brake is activated 11_When PID feedback source signal value is abnormal 12_When pulse counter achieves the counter set-value 13_When pulse counter achieves pre-count value 14_When alarm is triggered by any alarm condition 15_When VFD operates in Forward direction 16_When VFD operates in Reverse direction 17-When analog signal reaches a trigger level 19-When VFD trips on Overcurrent 2 20_HLD triggered 21_ULD triggered 22_When Fireman's Override mode is activated 23-When drive switches from Soft-Start mode to Bypass 24-When Motor-1 is enabled in MMC control 25-When Motor-2 is enabled in MMC control 26_When Motor-3 is enabled in MMC control 27-When Motor-4 is enabled in MMC control 28-When Motor-5 is enabled in MMC control 29_When Motor-6 is enabled in MMC control 30_When Motor-7 is enabled in MMC control 31_Pipe Leak protection is triggered 32_VFD provides Motor Preheat output 33_VFD provides steady frequency output 34_VFD is in Pipe Fill mode 35_VFD is in Sleep mode 36_VFD is in Speed Search mode 37-Pipe Broken protection is triggered 38-When Damper motor output is activated 39_Auxiliary timer output 40_Overpressure is triggered 41_When Lube or Screen Clean solenoid output is activated 42_When ACl analog input signal value is abnormal 43_When AVII analog input signal loss is detected 44_When VFD control is in Hand mode 45-When VFD control is in Auto mode 47_Aux motor start output in MMC control 48_Jockey pump start output 49_When current reaches High Current trigger level 50_When current is below Low Current trigger level
Option-07	1799	N	Relay exp. RA11	See [Option-06]	Defines functionality of output relay RA11 on I/O extension card.
Option-08	1800	N	Relay exp. RA12	See [Option-06]	Defines functionality of output relay RA12 on I/0 extension card.
Option-09	1801	N	Relay exp. RA13	See [Option-06]	Defines functionality of output relay RA13 on I/0 extension card.
Option-10	1802	N	Relay exp. RA14	See [Option-06]	Defines functionality of output relay RA14 on I/0 extension card.
Option-11	1803	N	Relay exp. RA15	See [Option-06]	Defines functionality of output relay RA15 on I/0 extension card.
Option-12	1804	N	Relay exp. RA16	See [Option-06]	Defines functionality of output relay RA16 on I/0 extension card.
Option-13	1805	N	Relay exp. RA17	See [Option-06]	Defines functionality of output relay RA17 on I/0 extension card.
Option-14	1806	N	Relay exp. RA18	See [Option-06]	Defines functionality of output relay RA18 on I/0 extension card.
Option-15	1807	N	Relay exp. RA19	See [Option-06]	Defines functionality of output relay RA19 on I/0 extension card.
Option-16	1808	N	Relay exp. RA20	See [Option-06]	Defines functionality of output relay RA20 on I/O extension card.

PARAMETER REFERENCE TABLES

Parameter Descriptions > ADV2 Menu

CODE	Mod Bus	AR	Display Name	Range	Description
Option-17	1809	N	IO Card Type	$\begin{aligned} & \text { 0_No Card } \\ & \text { 1_EMC-BPSO1 } \\ & \text { 4_EMC-D611A } \\ & \text { 5_EMC-D42A } \\ & \text { 6_EMC-R6AA } \end{aligned}$	Defines I/O card type.

Parameter Descriptions > ADV2 Menu

AR = Adjustable while running.

CODE	$\begin{array}{\|c} \mathrm{Mod} \\ \mathrm{Bu} \end{array}$	AR	Display Name	Range	Description
ADV2-00	2048	N	PID D-Gain	0.00 to 1.00 sec	Differential gain value for PID operation.
ADV2-01	2049	Y	Sleep Ctrl By	0_PID-Ausgang 1_PID Rf	0_Referenced to PID Output in Hz 1_Referenced to PID Feedback value in \%
ADV2-03	2051	Y	Mtr Brake Delay	0.000 to 65.000 sec	Delay after start command when the corresponding multi-function output terminal (10 : DC Brake) will be OFF.
ADV2-04	2052	Y	AFM1 Rev Value	$\begin{aligned} & 0 _0-10 \mathrm{~V} \\ & 1-0 \mathrm{~V} \\ & 2-5-0 \mathrm{~V} \end{aligned}$	$0 _0-10 \mathrm{~V}$: AFM1 output is $0-10 \mathrm{~V}$ when in REV. 1_OV: AFMl output is 0 V when in REV, $0-10 \mathrm{~V}$ in FWD direction. 2_5-0V: AFM1 output is $5-0 \mathrm{~V}$ when in REV, $5-10 \mathrm{~V}$ in FWD direction.
ADV2-05	2053	Y	AFM2 Rev Value	$\begin{aligned} & 0-0-10 \mathrm{~V} \\ & 1-0 \mathrm{~V} \\ & 2-5-0 \mathrm{~V} \end{aligned}$	$0 _0-10 \mathrm{~V}$: AFM2 output is $0-10 \mathrm{~V}$ when in REV. 1-0V: AFM2 output is 0 V when in REV, $0-10 \mathrm{~V}$ in FWD direction. 2_5-0V: AFM2output is 5-0V when in REV, 5-10V in FWD direction.
ADV2-06	2054	Y	AFM1 DC Lvl	0.00 to 100.00\%	Used with Multi-Function Output I0-59 set to 2:Output voltage. Output provides constant voltage 0 to 100% corresponding to $0-10 \mathrm{~V}$.
ADV2-07	2055	Y	AFM2 DC LvI	0.00 to 100.00\%	Used with Multi-Function Output IO-61 set to 2:Output voltage. Output provides constant voltage 0 to 100% corresponding to $0-10 \mathrm{~V}$.
ADV2-08	2056	Y	Analog Curve	0_Regular Curve 1-AVII 3-Point 2_ACl3-Point 3_AVII+ACl 3Point 4_AVI2 3-Point 5_AVII+AVI2 3Point 6_ACI+AVI2 3-Point 7_3x Als 3-Point	The analog input signal can be set up for linear curve or 3-point (piecewise) curve corresponding voltage/current input to frequency output. If using AVII, ADV2-09 < ADV2-11 < ADV2-13. If using ACI, ADV2-15 < ADV2-17 < ADV2-19. If using AVI2, ADV2-21 < ADV2-23 < ADV2-25. The output frequency will become 0% when the analog input value is lower than low point setting.
ADV2-09	2057	Y	AVII Low Value	(Variable)	Lowest analog input value for AVII that corresponds to frequency output of ADV2-10. ADV2-09< ADV2-11< ADV2-13
ADV2-10	2058	Y	AVI1 Low \%	-100 to 100\%	Frequency output corresponding to ADV2-09 input.
ADV2-11	2059	Y	AVII Mid Value	(Variable)	Middle analog input value for AVII that corresponds to frequency output of ADV2-12.
ADV2-12	2060	Y	AVI1 Mid \%	-100 to 100\%	Frequency output corresponding to ADV2-11 input.
ADV2-13	2061	Y	AVI1 Hi Value	(Variable)	Highest analog input value for AVII that corresponds to frequency output of ADV2-14.
ADV2-14	2062	Y	AVII High \%	-100 to 100\%	Frequency output corresponding to ADV2-13.
ADV2-15	2063	Y	ACI Low Value	(Variable)	Lowest analog input value for ACI that corresponds to frequency output of ADV2-16. ADV2-15< ADV2-17< ADV2-19
ADV2-16	2064	Y	ACI Low \%	-100 to 100\%	Frequency output corresponding to ADV2-15 input.
ADV2-17	2065	Y	ACI Mid Value	(Variable)	Middle analog input value for ACI that corresponds to frequency output of ADV2-18.
ADV2-18	2066	Y	ACI Mid \%	-100 to 100\%	Frequency output corresponding to ADV2-17 input.
ADV2-19	2067	Y	ACI High Value	(Variable)	Highest analog input value for ACI that corresponds to frequency output of ADV2-20.
ADV2-20	2068	Y	ACI High \%	-100 to 100\%	Frequency output corresponding to ADV2-19.
ADV2-21	2069	Y	AVI2 Low Value	0.00 to 10.00 V	Lowest analog input value for AVI2 that corresponds to frequency output of ADV2-22.
ADV2-22	2070	Y	AVI2 Low \%	-100 to 100\%	Frequency output corresponding to ADV2-21 input.
ADV2-23	2071	Y	AVI2 Mid Value	0.00 to 10.00 V	Middle analog input value for AVI2 that corresponds to frequency output of ADV2-24.

PARAMETER REFERENCE TABLES Parameter Descriptions > ADV2 Menu

CODE	$\begin{gathered} \text { Mod } \\ \mathrm{Bu} \end{gathered}$	AR	Display Name	Range	Description
ADV2-24	2072	Y	AVI2 Mid \%	-100 to 100\%	Frequency output corresponding to ADV2-23 input.
ADV2-25	2073	Y	AVI2 High Value	0.00 to 10.0 V	Highest analog input value for AVI2 that corresponds to frequency output of ADV2-26.
ADV2-26	2074	Y	AVI2 High \%	-100 to 100\%	Frequency output corresponding to ADV2-25.
ADV2-27	2075	Y	dEb Offset V	0.0 to 200.0 V	Decel Energy Backup Error (dEb) Offset Voltage that the DC Bus reduces by to initiate dEb operation. Varies by VFD Rating.
ADV2-28	2076	Y	dEb Mode Select	$\begin{aligned} & \text { 0_Disable } \\ & \text { 1_Auto Dec/Stop } \\ & \text { 2_AutoDec/Restart } \end{aligned}$	Select Decel Energy Backup Error (dEb) operation when DC Bus voltage drops by ADV2-27. This feature is used to detect power loss.
ADV2-30	2078	Y	PID Mode Select	$\begin{aligned} & \text { 0_Serial P, I, D } \\ & \text { 1_Parallel P,I, D } \end{aligned}$	0_Serial: VFD uses conventional PID control structure. 1_Parallel: Proportional, Integral, and Derivative gains are independent.
ADV2-31	2079	N	PID Unit Format	$\begin{aligned} & 0 _1 \\ & 1-0.1 \\ & 2 _0.01 \end{aligned}$	Select precision of PID operation.
ADV2-32	2080	N	PID Ref Source	0_Keypad 1_AVII Analog 2_ACI Analog 3_AVI2 Analog 4_RS-485	Select source of PID setpoint.
ADV2-36	2084	Y	PID2 Output	$\begin{aligned} & \text { 0_No } \\ & \text { 1_Limit 1st PID } \\ & \text { 2_1st PID off } \end{aligned}$	Used for Dual PID loop control. Default is No Limit. 0 _ PID2 is disabled 1_Limit 1st PID, 2nd PID output frequency will become a 1st PID High Frequency Limit value. 2nd PID will vary its output based on the ADV2-38 set-point and Aux Ai signal values. 2_1st PID (in direct mode) maintains system pressure and 2nd PID (in inverse mode) monitors tank or well level. Both PIDs are running simultaneously but only one at a time provides speed reference to VFD.
ADV2-37	2085	Y	PID2 Type	0_Direct 1_Inverse	Used for Dual PID loop control. 0_Direct: When feedback value is less than setpoint, then output increases. 1_Inverse: When feedback value is less than setpoint, then output decreases. This is the default setting.
ADV2-38	2086	Y	PID2 Set Point	0 to ADV2-61	PID2 target value for desired suction pressure.
ADV2-39	2087	Y	PID2 P-Gain	0.0 to 100.0\%	Proportional gain value for PID2 operation.
ADV2-40	2088	Y	PID2 --Time	0.00 to 100.00 Sec	Integral gain value for PID2 operation.
ADV2-41	2089	Y	PID2 Low Limit	SET-22 to ADV2-42	Minimum frequency for PID2 output.
ADV2-42	2090	N	PID2 High Limit	ADV2-41 to SET-23	Maximum frequency for PID2 output.
ADV2-43	2091	Y	PID2 Stp Delay	0.0 to 6000.0 Min	Duration PID2 output is less than ADV2-41 to fault causing "Low Level." Only used if ADV2-36 set to 1st PID Off.
ADV2-44	2092	Y	PID2 Exit LvI	0 to ADV2-61	If feedback value is greater than ADV2-44 for 10 seconds, then operation switches from PID2 to PID1. Only used when ADV2-36 set to 1st PID Off.
ADV2-45	2093	Y	Dual Demand	$\begin{aligned} & 0 \text { Disabled } \\ & 1 \text { Enabled } \end{aligned}$	With Dual Demand control, VFD will determine by wakeup time what demand level is in the system.
ADV2-46	2094	Y	Pipe Leak Sel	$\begin{aligned} & \text { 0_Disabled } \\ & \text { 1_P-Leak Alarm } \\ & \text { 2_P-Leak Trip } \end{aligned}$	If wakeup time exceeds H -L wake up time or L-L wake up time, VFD will activate Pipe Leak alarm or protection if activated.
ADV2-47	2095	Y	Last Wake Time	0 to 6000 Sec	Display duration from setpoint (High demand or Low Demand) to wakeup level.
ADV2-48	2096	Y	H-H Wake Time	0 to 6000 Sec	(High to High Demand) is an adjustable setting for High to High Demand wake up time, which should be determined during system startup. It is recommended to set time in this parameter to $10-20 \%$ greater value than ADV2-47 shows for proper Pipe Leak protection operation. Default $=4 \mathrm{sec}$
ADV2-49	2097	Y	H-L Wake Time	0 to 6000 Sec	(High to Low Demand) is an adjustable setting for High to Low Demand wake up time, which should be determined during system startup. It is recommended to set time in this parameter to $20-30 \%$ greater value than ADV2-47 shows for proper Pipe Leak protection operation. Default $=10$ sec .

CODE	$\begin{array}{\|c} \hline \text { Mod } \\ \text { Bu } \end{array}$	AR	Display Name	Range	Description
ADV2-50	2098	Y	L-L Wake Time	0 to 6000 Sec	(Low to Low Demand) is an adjustable setting for Low to Low Demand wake up time, which should be determined during system startup. It is recommended to set time in this parameter to 20-30\% greater value than ADV2-47 shows for proper Pipe Leak protection operation. Default $=14$ sec.
ADV2-51	2099	Y	L-H Wake Time	0 to 6000 Sec	(Low to High Demand) is an adjustable setting for Low to High Demand wake up time, which should be determined during system startup. It is recommended to set time in this parameter to $10-20 \%$ greater value than ADV2-47 shows to compensate for any future system changes. Default $=6$ sec.
ADV2-52	2100	Y	LD Set Point	0 to (variable)	Adjustable setting for Low Demand pressure set-point from 0 to [SET-20 F/B Max]x 0.95. It can be adjusted to lower or higher than HD (Main) pressure set-point value to provide desired pressure and prevent overpressure trip at pump start in Low Demand situation. Default = 70.0 PSI.
ADV2-53	2101	Y	LD Max Freq	SET-23 to SET-22	PID High Frequency Limit setting for Low Demand. Adjust to lower frequency setting to prevent overpressure trips during run but enough to maintain pressure at LD Set-point. Default $=48.00 \mathrm{~Hz}$.
ADV2-54	2102	Y	LD Timer	0 to 600 Sec	Adjustable setting for Low Demand mode time. When VFD determines Low Demand mode during wake-up but at any point pressure cannot reach ADV2-52 set-point within ADV2-54 timer, VFD will switch control to High Demand mode. Default = 10 sec .
ADV2-55	2103	Y	Clean Pump Sel	$\begin{aligned} & \text { 0_Disabled } \\ & \text { 1_Clean Pump } \\ & \text { 2_Anti-Jam } \\ & \text { 3_Clean/Anti-Jam } \end{aligned}$	Clean Pump: Provide periodic (ADV2-56) fast ramping starts to clean impeller. Anti-Jam: If lock rotor condition is detected, VFD periodically (5 seconds) starts motor for 1 second in reverse direction to unjam impeller. VFD performs this twice with 30 seconds wait time. If impeller is not freed, VFD trips on overload.
ADV2-56	2104	Y	Clean Pump Tmr	0.0 to 6000.0 Min	Set periodic interval for initiating Clean Pump starts.
ADV2-58	2106	N	Aux AI Select	$\begin{aligned} & \text { 0_AVII } \\ & \text { 1_ACI } \\ & \text { 2_AVI2 } \end{aligned}$	Aux Al signal will be used for control features by analog level and 2nd PID Loop. Select Al input to designate for Aux AI. The default is AVII.
ADV2-59	2107	N	Aux AI Unit		Select units of Aux AI.
ADV2-60	2108	N	Aux Unit Format	$\begin{aligned} & 0 _1 \\ & 1 _0.1 \\ & 2 _0.01 \end{aligned}$	Select precision of Aux Al.
ADV2-61	2109	N	Aux Max Value	0 to 30000 (unit)	Set max value of Aux AI.
ADV2-62	2110	N	Analog Trigger	0_Disable 1_Relay 2_Run Enable 3_Trip	0 Feature disabled 1_VFD will activate selected relay in any VFD state at the AI Trigger Level [ADV2-65] and deactivate by hysteresis value depending on the Trigger Type [ADV2-64]. 2_Enables VFD run command when HOA is in Hand or Auto mode based on Aux Al level depending on the Trigger Type [ADV2-64]. 3_ When it is set to Trip and signal reaches trigger level depending on A $\bar{D} V 2-64$ selection, VFD will trip and will require reset. VFD can be reset when Al signal changed by ADV2-65 Trigger Hysteresis value.

PARAMETER REFERENCE TABLES
 Parameter Descriptions > Motor Menu

CODE	Mod	AR	Display Name	Range	Description
ADV2-63	2111	N	Trigger Source	0_PIB F/B 1_Aux AI	This setting selects what will be the trigger for a tank fill, drain, or level control (analog trigger). 0 _The trigger will be standard PID loop feedback value 1_The trigger will be an auxiliary input
ADV2-64	2112	N	Trigger Type	0_Lower 1_Higher	0 _ The Trigger by Al function will be triggered if AI signal is less than [Ādv2-65] Trigger Level. 1_The function will be triggered if Al signal is greater than [ADV2-65].
ADV2-65	2113	Y	Trigger Level	0.0 to [ADV2-61]	Sets the desired target when the analog will be triggered. If ADV2-63 is set to 1_Aux AI, the range is 0.0 to SET-20. If ADV2-63 is set to 0 _PID F/B, the range is 0.0 to ADV2-61.
ADV2-66	2114	Y	Trigger Hyster	0.0 to [ADV2-61]	Hysteresis value is subtracted from trigger value in Higher trigger mode to determine OFF (trigger reset) state level. It is added to trigger value in Lower trigger mode. Its range is from 0 to [SET-20] PID F/B or [Adv2-61] Aux Al unit max.
ADV2-68	2116	Y	P-Fill Low Freq	SET-22 to SET-35	Pipe fill low frequency limit.

Parameter Descriptions > Motor Menu

> AR = Adjustable while running.

CODE	Mod	AR	Display Name	Range	Description
Motor-00	2304	N	Motor A-Tuning	0 None 1_IM Rotating 2_IM No-Rotation 3-PM Rotating 4_PM No-Rotation	Performs a motor test to measure the motor characteristics. Select motor type Induction Motor (IM) or Permanent Magnet (PM) motor and if the motor is allowed to rotate during auto-tune operation without load on the motor shaft.
Motor-01	2305	N	Motor Rs Value	0.0 to 65.535 Ohm	Induction Motor rotor resistance
Motor-02	2306	N	Motor Rr Value	0.0 to 65.535 Ohm	Induction Motor stator resistance
Motor-03	2307	N	Motor Lm Value	0.0 to 6553.5 mH	Induction Motor rotor inductance
Motor-04	2308	N	Motor Lx Value	0.0 to 6553.5 mH	Induction Motor stator inductance
Motor-05	2309	N	Control Method	$\begin{aligned} & 0 _ \text {V/F } \\ & 1 \text { 1------- } \\ & \text { 2_Sensorless } \end{aligned}$	Determines the control method of the motor as either a volts to frequency relationship (Induction Motor) or Sensorless Vector Control (SVC) (Permanent Magnet).
Motor-06	2310	N	Motor Type	$\begin{aligned} & \text { 0Induction Motor } \\ & \text { 1-PM- SPM } \\ & \text { 2_PM-IPM } \end{aligned}$	Identifies the type of motor being used. PM-SPM: Surface Permanent Magnet Motor PM-IPM: Interior Permanent Magnet Motor
Motor-07	2311	N	Motor Poles	0 to 65535	Identifies the number of poles in Permanent Magnet Motor.
Motor-08	2312	N	PM Inertia	0.0 to $6553.5 \mathrm{Kg}^{*} \mathrm{~m}^{\wedge}$	Identifies the inertia in Permanent Magnet Motor. This value is automatically calculated.
Motor-09	2313	N	PMRs	0.0 to 65.5335 hm	Permanent Magnet Motor stator resistance.
Motor-10	2314	N	PMLd	0.0 to 655.35 mH	Permanent Magnet Motor inductance d-axis.
Motor-11	2315	N	PMLq	0.0 to 655.35 mH	Permanent Magnet Motor inductance q-axis.
Motor-12	2316	Y	PM PG Angle	0 to 360 degree	Permanent Magnet Motor offset angle.
Motor-13	2317	Y	PM Ke Coeff	0.0 to 6553 v	Coefficient for optimal PM motor control.
Motor-14	2318	Y	Rotor Zeroing	0 Disabled 1_1/4 FLA Current 2_Hi Freq Inject 3_Pulse Inject	Permanent Magnet Motor rotor initial angle position detection method. Recommendation: "2" for IPM; "3" for SPM. If there is a bad effect, then set as " 1 ".
Motor-15	2319	Y	Torque Filter T	0.001 to 10.000 Sec	Response time in controlling torque to motor.
Motor-16	2320	Y	Slip Filter T	0.001 to 10.000 Sec	Response time in controlling slip compensation.
Motor-17	2321	Y	Torque Cmp Gain	0 to 10*	Gain value for output voltage increase to compensate for voltage drop on stator resistance at high motor loads in torque compensation function. * For PM motors max value is 5000 .
Motor-18	2322	Y	Slip Cmp Gain	0.00 to 10.00	Gain value for output frequency increase to provide slip compensation at high motor loads
Motor-19	2323	Y	Slip Dev Level	0.0 to 100.0\%	Slip percentage level to cause over slip trip. Setting of 0 is No Detection.
Motor-20	2324	Y	Slip Dev Det T	0.0 to 10.0 Sec	Duration slip percentage has to be at before causing over slip trip.

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Bus } \end{aligned}$	AR	Display Name	Range	Description
Motor-21	2325	Y	Over Slip Trip	0_Alarm and Run 1_Alarm and Decel 2_Alarm and Coast 3_Disabled	Operation when over slip trip occurs.
Motor-22	2326	Y	Motor Hunt Gain	0 to 10000	Gain value in detecting shaft speed of a synchronous motor. A sudden load change can cause shaft speed to fluctuate.
Motor-24	2328	Y	I/F Current	0 to 150\%	Percentage of nominal motor current [SET-03] used to regulate AC output current during I / F control and DC current during PM DC Alignment.
Motor-25	2329	Y	PM Bandwidth HS	0.00 to 600.00 Hz	Allowable frequency bandwidth around desired frequency in order to adjust operating frequency to prevent vibrations in motor operation.
Motor-26	2330	Y	PMSVC Fltr Gain	0.00 to 655.35	Gain value in adjusting the operating frequency from the desired frequency to prevent vibrations in motor operation.
Motor-27	2331	Y	Freq I/F to PM	0.00 to 599.00 Hz	When increasing frequency, the frequency to switch modes from I/F mode to PMSVC mode.
Motor-28	2332	Y	Freq PM to I/F	0.00 to 599.00 Hz	When decreasing frequency, the frequency to switch modes from PMSVC mode to I/F mode.
Motor-29	2333	Y	I/F fltr time	0.0 to 6.0 Sec	Low-pass filter time of current being commanded from I/F Current [Motor-24].
Motor-30	2334	Y	Angle Det Pulse	0.0 to 3.0	Value is a multiplier of nominal motor current which is magnitude of pulse during the angle detection. This is only used when Rotor Zeroing [Motor14] is set to 2 or 3 .
Motor-31	2335	Y	Zero voltage T	0.000 to 60.000 Sec	Duration the output is OV to establish a static startup. Once the system is at a static startup. The VFD can accurately estimate angles. This parameter is applicable when SS Normal Start [PROT-42] is not set to 0 .
Motor-32	2336	Y	Injection Frea	0 to 1200 Hz	Frequency used to determine angle of motor during High Frequency Injection. Injection Frequency should be at least 100 Hz larger than motor's nominal frequency. Carrier frequency should be 10 times larger than Injection Frequency.
Motor-33	2337	Y	Injection V	0.0 to 200.0 V	Voltage used to determine angle of motor during High Frequency Injection.
Motor-34	2338	N	Run Time Min	0 to 1439 min	Minutes of the motor run time. Less than 60 seconds is not recorded.
Motor-35	2339	N	Run Time Days	0 to 65535 day	Days of the motor run time.
Motor-36	2340	N	Motor PF	0.00 to 1.00	Power Factor value from motor nameplate
Motor-37	2341	N	PM Trq Comp I/F	0 to 5000	PM Torque Compensation in I/F Mode
Motor-38	2342	N	PM Trq Comp SVC	0 to 5000	PM Torque Compensation in SVC Mode
Motor-39	2343	N	DC-Tun Curr P	0 to 65535	Gain value regulating DC current during DC Alignment of PM motor.
Motor-40	2344	N	DC-Tun Curr I	0 to 65535	Integral gain regulating DC current during DC Alignment of PM motor.

SPECIFICATIONS

Common Specifications

Cooling Method			Forced air cooling by internal fans
Short Circuit Rating			The drive is suitable for use on a circuit capable of delivering not more than 100,000 symmetrical amperes (rms) when protected by suitable Class J fuses.
Agency Approvals			UL and CUL listed, CE, marked.
$\begin{aligned} & \text { 아 } \\ & \frac{Y}{y} \\ & \underset{Z}{O} \end{aligned}$	Control Method		Pulse Width Modulation (PWM) with V/F and SVC (Sensorless Vector Control) for IM and PM motors.
	Frequency Setting Resolution		Digital Reference: 0.01 Hz (Below 100 Hz), 0.1 Hz (Over 100 Hz) Analog Reference: [Max. output frequency] x $0.03 / 60 \mathrm{~Hz}$ (± 11 bit)
	Frequency Accuracy		Digital: $\pm 0.01 \%$ of Max. Output Frequency. Analog: $\pm 0.1 \%$ of Max. Output Frequency.
	V/F Control Curve		Linear curve, 1.5 power curve, square curve, 13 preset curves, and 4 point adjustable curve
	Overload Capacity		Variable Torque: 120\% of VFD rated current for 1 minute during every 5 minutes of operation. Constant Torque: 120\% of VFD rated current for 1 minute during every 5 minutes of operation and 160% for 3 seconds during every 25 seconds of operation.
	Starting Torque		Up to 150% or higher at 0.5 Hz (Torque Accuracy $\pm 5 \%$).
	Torque Limit (Stall level)		Variable Torque: Max. 130\% torque current; Constant Torque: Max. 160\% torque current
	Operation Method		Keypad / Terminals / RS-485 BACnet or Modbus Communication / Optional Modbus TCP/IP \& Ethernet IP
	Frequency Setting		Two Analog Inputs 0-10VDC/4-20mA and One AI 0-10VDC. Digital Input select, Keypad, or Communication
	$\begin{aligned} & \text { 드 } \\ & \text { ㅡㅡㅡ } \end{aligned}$	Start Signal	Forward, Reverse, and Jog (some features can start and stop VFD based on analog signal)
		Digital Inputs	8 programmable digital inputs can be set to any selection from long list of functions.
		Multi-Step	Up to 17 Speeds can be set, including Jog by Programmable Digital Inputs.
		Accel/Decel Time and Presets	0.00-600.00/0.0-6000.0 seconds. Three ACC/DEC preset values switched by digital inputs or one by frequency. Additional adjustable Accel/Decel S-Curve pattern.
		Emergency Stop	Ext. Trip and Shutdown immediately interrupt VFD output in any control method.
		Jog	Jog Operation with adjustable Jog frequency
		Fault Reset	Resets VFD via keypad, digital input, or communication. Some critical faults must be reset by recycling power.
		Safety Inputs	SCM and STO terminals for safety circuit wiring.
		Three Multi-Function Relays	One relay with Form C: 250VAC 3A/30VDC, 3A (resistive) 1.2A (inductive) contact; Two relays with Form A: 250VAC 1.2A/ 30VDC 3A (resistive) 1.2A (inductive). Each relay can be programmed to any selection from the functions list.
		Two Analog Outputs	Selections: Output Frequency, Output Current, Output Voltage, Output kW, DC Link Voltage, Power Factor, AVII, ACI, AVI2 AI signal level, and constant output. Both outputs are 0-10VDC scalable from 10 to 200\%.
	General Operation Functions		DC Braking, Frequency Limit, Jump Frequencies, 2nd ACC/DEC, Auto Restart, Auto-Tuning, PID w/sleep, Flying Start, Speed Search, DC Braking, Slip Compensation, Motor Pre-heat, Temperature Foldback, Damper Control, Fireman's Override, Shutdown, Power-on Delay, Run Delay, Minimum Run Timer, PM Motor and FE MagForce Control and Auto-Tuning, trigger by Analog Level, Frequency High Limit by Analog Leve, Analog Repeater Output, Current Foldback, Scheduling, Single or three-phase input, Auxiliary Timer, HOA Source selection, Keypad as OFF mode, 2/3-Wire Run Command, Hopping Carrier Frequency
		p Operation Functions	Sleep Mode with Pressure Boost, Pipe Fill, PID, Overpressure, ULD (Underload), HLD (High Load), Broken Pipe, Backspin Timer, MMC, Lubrication, Screen Clean, No-Flow Protection, Pump Prime Time, Clean Pump, Anti-jam, Multi-VFD, Jockey, Dual Demand, Pipe Leak Detection, 2nd PID Operation, PT100/PTC Protection, Transducer Redundancy
	VFD Fault Trips		Over Voltage, Low Voltage, Over Current, Overload, Short Circuit, Ground Fault, VFD Overheat, Input Phase Loss, Output Phase Open, CPU Communication Error, Signal Loss, Hardware Fault, Overpressure, Damper, No Flow, Trip by Al, various Multi-VFD, Pipe Leak, Anti-Jam, etc.
	VFD Alarm		Stall Prevention at ACC and DEC, Overload, Thermal Sensor Fault, Capacitors High Temperature, Signal Loss, Overpressure, Underload, High Load, Pipe Leak, various Multi-VFD setup, App Disconnect, Limit by Level, etc.
	Overcurrent		200/208/230/460VAC Variable Torque: At 185\% of VFD rated current 200/208/230/460VAC Constant Torque: At 240% of VFD rated current Current clamp: Variable Torque: 130-135\%, Constant Torque 170-175\% 575VAC models: At 225\% VFD rated current Current clamp: Variable Torque: 128-141\%, Constant Torque: 170-175\%
	Overvoltage		230VAC models: At 410VDC DC bus voltage 460VAC models: At 820VDC DC bus voltage 575VAC models: At 1016VDC DC bus voltage
		t History	Keypad provides 6 fault records. VFD logs 30 faults.
	Operating Temperature		NEMA 1: $-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}\left(14{ }^{\circ} \mathrm{F} \sim 104{ }^{\circ} \mathrm{F}\right)$, Open Type: $-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}\left(14{ }^{\circ} \mathrm{F} \sim 122{ }^{\circ} \mathrm{F}\right)$
	Storage Temperature		$-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F} \sim 158{ }^{\circ} \mathrm{F}\right)$
	Ambient Humidity		Up to 95\% RH (Non-Condensing)
	Altitude		Normal up to $3,300 \mathrm{ft}(1,000 \mathrm{~m})$. At altitude up to $2,000 \mathrm{~m}$, de-rate by 1% of rated current or lower $0.5^{\circ} \mathrm{C}$ of temperature for every 100 m above $1,000 \mathrm{~m}$. Maximum altitude for Corner Grounded TN system is $2,000 \mathrm{~m}$. For application over $2,000 \mathrm{~m}$, please contact Technical Support.
	Vibration and Impact		1 mm peak to peak value from 2 Hz to $13.2 \mathrm{~Hz} ; 0.7 \mathrm{G}-1.0 \mathrm{G}$ from 13.2 Hz to $55 \mathrm{~Hz} ; 1.0 \mathrm{G}$ from 55 Hz to 512 Hz . Comply with IEC 60068-2-6 and IEC/EN60068-2-27.
	Environmental Conditions		Pollution degree 2. No Corrosive Gas, Combustible Gas, Oil Mist or Dust. IEC60721-3-3/ IEC60364-1/ IEC60664-1.

200~230V Class 1~125HP (0.75~90kW)

$\begin{aligned} & \text { Model (CXD-xxx-2V) } \\ & \text { UL Type 1 }{ }^{(1)} \end{aligned}$		005A	007A	010A	015A	021A	031A	046A	061A	075A	090A	105A	146A	180A	215A	276A	322A
Frame Size		A					B			C			D		E		
Input Ratings	Voltage	200 (-15\%) to 240 VAC ($+10 \%$)															
	Frequency	$50 / 60 \mathrm{~Hz}(\pm 5 \%)$															
	Current - Variable Torque	6.4	9.6	15	22	25	50	65	83	100	116	146	180	215	276	322	-
	Current Constant Torque	3.9	6.4	12	16	20	28	36	52	72	83	99	124	143	171	206	245
Output Ratings	Carrier Freq	$2.0-15.0 \mathrm{kHz}$								$2.0-10.0 \mathrm{kHz}$					2.0-9.0kHz		
	Voltage ${ }^{(2)}$	200~240 VAC ${ }^{(2)}$															
	Frequency	$0.01 \sim 599 \mathrm{~Hz}$													$0.01 \sim 400 \mathrm{~Hz}$		
Efficiency		98\%															
Power Factor		>0.98															
Weight kg (lbs.)		$2.6 \pm 0.3(5.8 \pm 0.7)$					$5.4 \pm 1(1.9 \pm 2.2)$			$9.8 \pm 1.5(21.6 \pm 3.3)$			$38.5 \pm 1.5(84.9 \pm 3.3)$		$64.8 \pm 1.5(142.9 \pm 3.3)$		
DC Choke		None											Built-in 3\%				
VFD Ratings with 3-Phase Input Power																	
Variable Torque Motor ${ }^{(3)}$ Ratings	Max Amps	5	7.5	10	15	21	31	46	61	75	90	105	146	180	215	276	322
	Capacity [kVA]	2	3	4	6	8.4	12	18	24	30	36	42	58	72	86	110	128
	Max HP @ 200 V Surface Motor	1	1.5	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100
	Max HP @ 208 V Surface Motor	1	1.5	2	3	5	7.5	10	20	25	30	30	50	60	75	100	100
	Max HP @ 230 V Surface Motor	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125
	Max HP @ 200 V 4" Submersible	. 75	1.5	2	3	5	7.5	-	-	-	-	-	-	-	-	-	-
	Max HP @ 230 V 4" Submersible	1	1.5	2	3	5	7.5	-	-	-	-	-	-	-	-	-	-
	Max HP@200 V 6" Submersible	-	-	-	-	5	7.5	10	15	20	25	30	40	40	60	-	-
	Max HP @ 230 V 6" Submersible	-	-	-	-	5	7.5	10	20	20	25	30	40	50	60	-	-
Constant Torque Motor ${ }^{(3)}$ Ratings	Max Amps	3	5	8	11	17	25	33	49	65	75	90	120	146	180	216	255
	Capacity [kVA]	1.2	2	3.2	4.4	6.8	10	13	20	26	30	36	48	58	72	86	20
	Max HP @ 200 V	. 5	1	2	3	3	5	10	15	20	20	25	40	50	60	60	75
	Max HP @ 230 V	. 5	1	2	3	5	8	10	15	20	25	30	40	50	60	75	100
VFD Ratings with 1-Phase Input Power																	
Variable Torque Motor Ratings	Max Amps	2.5	3.75	5	7.5	10.5	15.5	23	30.5	37.5	45	52.5	48.1	59.4	70.9	91	106.2
	Max HP @ 200 V Surface Motor	. 5	. 75	1	1	2	3	5	7.5	10	10	15	10	15	20	25	30
	Max HP @ 208 V Surface Motor	. 5	. 75	1	2	2	3	5	7.5	10	10	15	15	20	25	30	30
	Max HP @ 230 V Surface Motor	. 5	. 75	1	2	3	5	7.5	10	10	15	15	10	20	25	30	40
	Max HP @ 200 V 4" Submersible	-	. 5	. 5	1.5	2	3	5	7.5	-	-	-	-	-	-	-	-
	Max HP @ 230 V 4" Submersible	-	. 5	1	1.5	2	3	5	7.5	-	-	-	-	-	-	-	-
	Max HP @ 200 V 6" Submersible	-	-	-	-	-	-	5	7.5	10	10	10	10	15	20	25	30
	Max HP @ 230 V 6" Submersible	-	-	-	-	-	-	5	7.5	10	10	15	15	20	20	25	33
Constant Torque Motor Ratings	Max Amps	1.5	2.5	4	5.5	8.8	12.5	16.5	24.5	32.5	37.5	45	39.6	48.2	59.4	71	84.2
	Max HP @ 200 V	0.25	. 5	. 75	1	2	3	3	5	10	10	10	10	10	15	20	25
	Max HP @ 230 V	0.25	. 5	. 75	1	2	3	5	7.5	10	10	15	10	15	20	25	30

${ }^{(1)}$ UL Type 1 kit comes with UL Open Type VFD which are Frame D and larger.
${ }^{(2)}$ The VFD cannot produce output voltage greater than input voltage.
${ }^{(3)}$ Variable torque (VT) motor rating based on a 120% overload for 1 minute. Constant Torque (CT) motor rating based on 120\% overload for 1 minute and 160\% overload for 3 seconds.

460V Class 1~75HP (5.5~55kW)

Model (CXD-xxx-4V) UL Type ${ }^{(1)}$		003A	004A	005A	008A	010A	013A	018A	024A	032A	038A	045A	060A	073A	091A	110A
Frame Size		A							B			C			DO	
Input Ratings	Voltage	380 (-15\%) ~ 480 VAC (+ 10\%)														
	Frequency	$50 / 60 \mathrm{~Hz}(\pm 5 \%)$														
	Current - Variable Torque	4.3	6	8.1	12.4	16	20	22	26	35	42	50	66	80	91	110
	Current - Constant Torque	3.5	4.3	5.9	8.7	14	15.5	17	20	26	35	40	47	63	74	101
Output Ratings	Carrier Freq	2.0-15.0kHz										$2.0-10.0 \mathrm{kHz}$				
	Voltage ${ }^{(2)}$	3-phase, 380 ~ 480 VAC ${ }^{(3)}$														
	Frequency	$0.01 \sim 599 \mathrm{~Hz}$														
Efficiency		98\%														
Power Factor		>0.98														
Weight kg (lbs.)		$2.6 \pm 0.3(5.8 \pm 0.7)$							$5.4 \pm 1(11.9 \pm 2.2)$			$9.8 \pm 1.5(21.6 \pm 3.3)$			$27 \pm 1(59.5 \pm 2.2)$	
DC Choke		None													Built-in 3\%	
VFD Ratings with 3-Phase Input Power																
Variable Torque Motor ${ }^{(3)}$ Ratings	Max Amps	3	4.2	5.5	8.5	10.5	13	18	24	32	38	45	60	73	91	110
	Capacity [kVA]	2.4	3.3	4.4	6.8	8.4	10.4	14.3	19	25	30	36	48	58	73	88
	Max HP @ 460 V Surface Motor	1.5	2	3	5	5	7.5	10	15	20	25	30	40	50	60	75
	Max HP @ 460 V 4" Submersible	1	2	3	5	5	5	10	10	15	-	-	-	-	-	-
	Max HP @ 460 V 6" Submersible	-	-	-	-	5	7.5	10	15	20	20	25	30	40	50	60
	Max HP @ 460 V 8" Submersible	-	-	-	-	-	-	-	-	-	-	-	40	50	60	75
Constant Torque Motor ${ }^{(3)}$ Ratings	Max Amps	1.7	3	4	6	9	10.5	12	18	24	32	38	45	60	73	91
	Capacity [kVA]	2.2	2.4	3.2	4.8	7.2	8.4	10.4	14.3	19	25	30	36	48	58	73
	Max HP@ 460 V	. 75	1.5	2	3	5	5	7.5	10	15	20	25	30	40	50	60
VFD Ratings with 1-Phase Input Power																
Variable Torque Motor Ratings	Max Amps	1.5	2.1	2.75	4.25	5.25	6.5	9	12	16	19	22.5	30	36.5	30	36.3
	Max HP @ 460 V Surface Motor	. 5	1	1	2	3	3	5	7.5	10	10	15	20	25	20	25
	Max HP @ 460 V 4" Submersible	. 5	. 5	1	2	2	3	5	5	7.5	10	10	15	-	-	-
	Max HP @ 460 V 6" Submersible	-	-	-	-	-	-	5	5	7.5	10	10	15	20	15	20
	Max HP@ 460 V 8" Submersible	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Constant Torque Motor Ratings	Max Amps	0.8	1.5	2	3	4.5	5.3	6	9	12	16	19	22.5	30	24.1	30
	Max HP@ 460 V	0.25	. 5	. 75	1.5	2	3	3	5	7.5	10	10	15	20	20	20

${ }^{(1)}$ UL Type 1 kit comes with UL Open Type VFD which are Frame D and larger.
${ }^{(2)}$ The VFD cannot produce output voltage greater than input voltage.
${ }^{\text {(3) }}$ Variable torque (VT) motor rating based on a 120% overload for 1 minute. Constant Torque (CT) motor rating based on 120% overload for 1 minute and 160% overload for 3 seconds.

460V Class 100~675HP (75~500kW)

Model (CXD-xxx-4V) UL Type ${ }^{(1)}$		150A	180A	220A	260A	310A	370A	460A	530A	616A	683A	770A
Frame Size		D		E		F		G		H		
Input Ratings	Voltage	380 (-15\%) ~ 480 VAC (+10\%)										
	Frequency	$50 / 60 \mathrm{~Hz}(\pm 5 \%)$										
	Current - Variable Torque	150	180	220	260	310	370	460	530	616	683	770
	Current Constant Torque	114	157	167	207	240	300	380	400	494	555	625
Output Ratings	Max Carrier Freq	$\begin{gathered} 2.0-10.0 \\ \mathrm{kHz} \end{gathered}$	2.0-9.0kHz									
	Voltage ${ }^{(2)}$	3-phase, 380~480 VAC ${ }^{(3)}$										
	Frequency	$0.01 \sim 599 \mathrm{~Hz}$										
Efficiency		98\%										
Power Factor		>0.98										
Weight kg (lbs.)		$38.5 \pm 1.5(84.9 \pm 3.3)$		$64.8 \pm 1.5(142.9 \pm 3.3)$		$86.5 \pm 1.5(190.7 \pm 3.3)$		$134 \pm 4(295.4 \pm 8.9)$		228 (635)		
DC Choke		Built-in 3\%										
VFD Ratings with 3-Phase Input Power												
Variable Torque Motor ${ }^{(3)}$ Ratings	Max Amps	150	180	220	260	310	370	460	530	616	683	770
	Capacity [kVA]	120	143	175	207	247	295	367	422	491	544	613
	Max HP @ 460V Surface Motor	100	150	150	200	250	300	350	450	500	550	600
	Max HP @ 460 V 4" Submersible	-	-	-	-	-	-	-	-	-	-	-
	Max HP @ 460 V 6" Submersible	-	-	-	-	-	-	-	-	-	-	-
	Max HP @ 460 V 8" Submersible	100	100	150	175	200	-	-	-	-	-	-
Constant Torque Motor ${ }^{(3)}$ Ratings	Max Amps	110	150	180	220	260	310	370	460	550	616	683
	Capacity [kVA]	88	120	143	175	207	247	295	367	438	491	544
	Max HP @ 460 V	75	100	150	150	200	250	300	350	450	500	550
VFD Ratings with 1-Phase Input Power												
Variable Torque Motor Ratings	Max Amps	49.5	59.4	72.6	85.8	102.3	122.1	151.8	174.9	203.3	225.4	254.1
	Max HP @ 460 V Surface Motor	30	40	50	60	75	75	100	125	150	150	200
	Max HP @ 460 V 4" Submersible	-	-	-	-	-	-	-	-	-	-	-
	Max HP @ 460 V 6" Submersible	30	40	40	50	60	-	-	-	-	-	-
	Max HP @ 460 V 8" Submersible	-	-	40	50	60	75	100	125	125	150	175
Constant Torque Motor Ratings	Max Amps	36.3	49.5	59.4	72.6	85.8	102.3	122.1	151.8	181.5	203.3	225.4
	Max HP @ 460 V	30	40	50	60	60	75	100	125	150	150	200

${ }^{(1)}$ UL Type 1 kit comes with UL Open Type VFD which are Frame D and larger.
${ }^{(2)}$ The VFD cannot produce output voltage greater than input voltage.
${ }^{(3)}$ Variable torque (VT) motor rating based on a 120% overload for 1 minute. Constant Torque (CT) motor rating based on 120% overload for 1 minute and 160% overload for 3 seconds.

575~690V Class 1~150HP (1.5~175kW)

Model (CXD-xxx-6V) UL Type ${ }^{(1)}$		003A	004A	006A	009A	012A	018A	024A	030A	036A	045A	054A	067A	086A	104A	125A	150A
Frame Size		A			B				C			D		E			
Input Ratings	Voltage	525 (-15\%) ~ 600 VAC (+10\%)							525 (-15\%) - 690 VAC (+10\%)								
	Frequency	$50 / 60 \mathrm{~Hz}(\pm 5 \%)$															
	Current - Variable Torque	3.8	5.4	10.4	14.9	16.9	21.3	26.3	36	43	54	51	64	84	102	122	147
	Current Constant Torque	3.1	4.5	7.2	12.3	15	18	22.8	29	36	43	45	54	66	84	102	122
Output Ratings	Max Carrier Freq	2.0-15.0kHz							2.0-9.0kHz								
	Voltage ${ }^{(2)}$	3-phase, 525 ~ 600 VAC $^{(2)}$															
	Frequency	$0.01 \sim 599 \mathrm{~Hz}$															
Efficiency		97\%			98\%				97\%								
Power Factor		>0.98															
Weight kg (lbs.)		$3 \pm 0.3(6.6 \pm 0.7)$			$4.8 \pm 1(10.6 \pm 2.2)$				$10 \pm 1.5(22 \pm 3.3)$			$39 \pm 1.5(86 \pm 3.3)$		$61 \pm 1.5(134.5 \pm 3.3)$			
DC Choke		None										Built-in 3\%					
VFD Ratings with 3-Phase Input Power																	
Variable Torque Motor ${ }^{(3)}$ Ratings	Max Amps	3	4.3	6.7	9.9	12.1	18.7	24.2	30	36	45	54	67	86	104	125	150
	Capacity [kVA]	3	4.3	6.7	9.9	12.1	18.6	24.1	36	43	54	65	80	103	124	149	179
	Max HP @ 575V Surface Motor	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125	150
	Max HP @ 575 V 4" Submersible	1.5	2	3	5	7.5	10	15	-	-	-	-	-	-	-	-	-
	Max HP@575V 6" Submersible	-	-	-	7.5	7.5	10	20	25	25	30	40	50	60	-	-	-
	Max HP @ 575 V 8" Submersible	-	-	-	-	-	-	-	-	-	-	40	50	75	75	100	100
Constant Torque Motor ${ }^{(3)}$ Ratings	Max Amps	2.5	3.6	5.5	8.2	10	15.5	20	24	30	36	45	54	67	86	104	125
	Capacity [kVA]	2.5	3.6	5.5	8.2	10	15.4	19.9	29	36	43	54	65	80	103	124	149
	Max HP@ 575 V	1.5	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125
VFD Ratings with 1-Phase Input Power																	
Variable Torque Motor Ratings	Max Amps	1.5	2.15	3.35	4.95	6.05	9.35	12.1	15	18	22.5	17.82	22.11	28.3	-	-	-
	Max HP @ 575V Surface Motor	. 75	1	2	3	3	7.5	10	10	15	20	15	20	25	-	-	-
	$\text { Max HP @ } 575 \text { V }$ 4" Submersible	. 5	1	2	3	3	5	7.5	10	10	15	-	-	-	-	-	-
	Max HP @ 575 V 6" Submersible	-	-	-	-	-	5	7.5	10	10	15	10	15	20	-	-	-
	Max HP @ 575 V 8" Submersible	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Constant Torque Motor Ratings	Max Amps	1.25	1.8	2.75	4.1	5	7.7	9.95	10	12	15	18	14.8	17.8	-	-	-
	Max HP@ 575 V	. 5	1	2	3	3	5	7.7	7.5	10	10	15	10	15	-	-	-

${ }^{(1)}$ UL Type 1 kit comes with UL Open Type VFD which are Frame D and larger.
${ }^{(2)}$ The VFD cannot produce output voltage greater than input voltage.
${ }^{(3)}$ Variable torque (VT) motor rating based on a 120% overload for 1 minute. Constant Torque (CT) motor rating based on 120% overload for 1 minute and 160% overload for 3 seconds.

575~690V Class 150~700HP (160~522kW)

Model (CXD-xxx-6V) UL Type ${ }^{(1)}$		180A	220A	290A	350A	430A	465A	590A	675A
Frame Size		F		G		H			
Input Ratings	Voltage	525 (-15\%) ~ $690 \mathrm{VAC}(+10 \%$)							
	Frequency	$50 / 60 \mathrm{~Hz}$ ($\pm 5 \%$)							
	Current - Variable Torque	178	217	292	353	454	469	595	681
	Current Constant Torque	148	178	222	292	353	388	504	681
Output Ratings	Max Carrier Freq	2.0-9.0kHz							
	Voltage ${ }^{(2)}$	3-phase, 525 ~ $690 \mathrm{VAC}^{(2)}$							
	Frequency	$0.01 \sim 599 \mathrm{~Hz}$							
Efficiency		97\%		98\%					
Power Factor		>0.98							
Weight kg (lbs.)		$88 \pm 1.5(194 \pm 3.3)$		$135 \pm 4(297.6 \pm 8.8)$		$243 \pm 5(535.7 \pm 11)$			
DC Choke		Built-in 3\%							
VFD Ratings with 3-Phase Input Power									
Variable Torque Motor ${ }^{(3)}$ Ratings	Max Amps	180	220	290	350	430	465	590	675
	Capacity [kVA]	215	263	347	418	494.5	534.7	678.5	776
	Max HP@ 575V Surface Motor	150	200	250	350	400	450	500	750
	Max HP @ 575 V 8" Submersible	125	175	200	-	-	-	-	-
Constant Torque Motor ${ }^{(3)}$ Ratings	Max Amps	150	180	220	290	350	385	465	675
	Capacity [kVA]	179	215	239	347	402.5	442.7	534.7	776
	Max HP@ 575 V	150	150	200	250	350	400	450	750

${ }^{(1)}$ UL Type 1 kit comes with UL Open Type VFD which are Frame D and larger.
${ }^{(2)}$ The VFD cannot produce output voltage greater than input voltage.
${ }^{(3)}$ Variable torque (VT) motor rating based on a 120% overload for 1 minute. Constant Torque (CT) motor rating based on 120% overload for 1 minute and 160% overload for 3 seconds.

Derating Charts

When selecting the best drive for the application, consider factors such as carrier frequency, ambient temperature, altitude, etc. Use the following equation to select the most suitably rated drive:

Actual rated current for the application (A) =

(A) Rated output current (consult motor specifications)
x (A) Ambient temperature rated derating (see "Ambient Temperature Derating" on page 247)
x (\%) Altitude rated derating (see "Altitude Derating" on page 248)
x (\%) Carrier frequency rated derating (see "Carrier Frequency Derating" on page 245)
NOTE: For information on V/F Pattern, refer to "V/F Pattern" on page 212.

Carrier Frequency Derating

230 V / 460 V Induction Motor with VF or SVC Control

SPECIFICATIONS

230 V / 460 V Permanent Magnet Motor with SVC Control (FE MagForce)

575 V / 690 V Induction Motor with VF or SVC Control

Constant Torque Applications

Ambient Temperature Derating

UL Protection Level	Ambient Temperature	Current

Altitude Derating

Altitude	Current
$0-1000 \mathrm{~m}$	Operate drive at rated current
$1000-2000 \mathrm{~m}$	For every 100 m increase: Either 1) decrease rated current by 1%, or 2) lower the temperature by $0.5^{\circ} \mathrm{C}$
2000 m	Maximum temperature allowable; do not exceed

Maximum Frequency Output

Induction Motor Max Frequency

Minimum Carrier Frequency Requirement	Maximum Operation Frequency
2 k	200 Hz
3 k	300 Hz
4 k	400 Hz
5 k	500 Hz
6 k	599 Hz

Max Frequency By Model

VFD models	Maximum Operation Frequency
$230 \mathrm{~V} ; 55 \mathrm{kw}+$	$200 \mathrm{~Hz}^{*}$
$460 \mathrm{~V} ; 90 \mathrm{kw}+$	$300 \mathrm{~Hz}^{*}$
$575 \mathrm{~V} \& 690 \mathrm{~V}$	599 Hz

*The carrier frequency should be set at least to 4 k .

Replacement Components List

Description	Part Number	Applicable Models			Quantity Needed
VFD Keypad*	CXD-KPD	All			1
Remote Keypad Mounting Bracket	MKC-KPPK				1
Control Board*	5503005502				1
1/0 Board	5503005701				1
FE Connect Communication Card	10000004840				1
Ethernet Communication Card	CMC-EIP01				1
Extension DCI/O Card	EMC-D42A				1
Extension AC Input Card	EMC-611A				1
Extension Relay Card	EMC-R6AA				
Male to Male Keypad Connector**	3072357401				1
Heat Sink Cooling Fan	MKC-AFKM	CXD-005A-2V	CXD-003A-4V	CXD-003A-6V	1
		CXD-007A-2V	CXD-004A-4V	CXD-004A-6V	
		CXD-010A-2V	CXD-005A-4V	CXD-006A-6V	
		CXD-015A-2V	CXD-008A-4V		
		CXD-021A-2V	CXD-010A-4V		
			CXD-013A-4V		
			CXD-018A-4V		
	MKC-BFKM1	CXD-031A-2V	CXD-024A-4V	CXD-009A-6V	1
				CXD-012A-6V	
				CXD-018A-6V	
				CXD-024A-6V	
	MKC-BFKM2	CXD-046A-2V	CXD-032A-4V		1
			CXD-038A-4V		
	MKC-BFKM3	CXD-061A-2V			1
	MKC-CFKM		CXD-045A-4V		1
			CXD-060A-4V		
			CXD-073A-4V		
	MKC-CFKM	CXD-075A-2V		CXD-030A-6V	2
		CXD-090A-2V		CXD-036A-6V	
		CXD-105A-2V		CXD-045A-6V	
	MKC-DOFKM		CXD-091A-4V		1
			CXD-110A-4V		
	MKC-DFKM	CXD-146A-2V	CXD-150A-4V	CXD-054A-6V	1
		CXD-180A-2V	CXD-180A-4V	CXD-067A-6V	
	MKC-EFKM3			CXD-086A-6V	1
				CXD-104A-6V	
				CXD-125A-6V	
				CXD-150A-6V	
	MKC-EFKM1	CXD-215A-2V			1
		CXD-276A-2V			
	MKC-EFKM2	CXD-322A-2V	CXD-220A-4V		1
			CXD-260A-4V		
	MKC-FFKM		CXD-310A-4V	CXD-180A-6V	1
			CXD-370A-4V	CXD-220A-6V	
	MKC-GFKM		CXD-460A-4V	CXD-290A-6V	1
			CXD-530A-4V	CXD-350A-6V	
	MKC-HFKM		CXD-616A-4V		2
			CXD-683A-4V		
			CXD-770A-4V		
	MKC-HFKM1			CXD-430A-6V	2
	MKC-HFKM1			CXD-465A-6V	3
				CXD-590A-6V	
				CXD-675A-6V	

*IMPORTANT: If replacing a keypad or control board for an X-Drive with firmware version 1.2 , both the keypad and the control board must be replaced together. Be sure to notify your sales representative.
${ }^{* *}$ Included with CXD-KPD.

SPECIFICATIONS

Applicable Standards

Applicable Standards

1. UL508C - UL/CUL
2. CE
a. Low Voltage

- EN61800-5-1
b. EMC
- EN61000-3-12
- IEC61000-6-2
- IEC61000-4-2
- IEC61000-4-4
- IEC61000-4-6
- EN61800-3
- IEC61000-6-4
- IEC61000-4-3
- IEC61000-4-5
- IEC61000-4-8

3. C-Tick
4. ROHS

GLOSSARY

Acronym/Term	Definition
4-20mA	The range for analog current input
Analog Input (AI)	Hardware interfaces that accept non-digital (analog) signals.
ACl	Analog Current Input
ACM	Analog Common: Reference for analog outputs
AFM 1	Analog Multi-Function Output \#1
Aux Mtr Stop Hz	Auxiliary Motor Stop Hertz
AVII	Analog Voltage Input 1
AVR Select	Automatic Voltage Regulation Select
AWG	American Wire Gauge: A standardized measurement of wire diameters important for determining current-carrying capacity.
BAS	Building Automation System: A computer-based control system that controls and monitors a building's mechanical and electrical equipment.
BMS	Building Management System: A computer-based system that controls and monitors a building's mechanical and electrical equipment.
CFM	Cubic feet per minute
CMH	Cubic meters per hour
COM	Common: pull-up resistance reference to digital inputs
Com Card	Communications Card
DCM	Digital Common: Reference for digital inputs
D-Inputs Status	Digital Inputs Status
D-Outputs Status	Digital Outputs Status
DI	Digital Input
DI NO/NC	Digital Input Normally Open/Normally Closed
E-Stop	Emergency Stop
ETH Type	Electronic Thermal motor protection Type
EMI	Electromagnetic Interference: See RFI.
Ext HOA in Auto	External Hand Off Automatic in Automatic
FDT	Frequency Detection
FLA	Full Load Amperes: The nameplate amperage rating of the motor when it is running at its designed horsepower and on the motors designed voltage.
FO	Fireman's Override
FO PID S-Point	Fireman's Override PID set point
FO with RUN Cmd	Fireman's Override with RUN command
FWD	forward
GFCI	Ground Fault Circuit Interrupter: A fast-acting circuit breaker designed to shut off electric power in the event of a ground-fault within as little as $1 / 40$ of a second.
GPM	Gallons per Minute: A unit of volumetric flow rate in the United States.
H-H Wake Time	High-to-High Demand Wakeup Time
H-L Wake Time	High-to-Low Demand Wakeup Time
HLD Recover Cnt	High Load Detection Recovery Count
HLD Recovery T	High Load Detection Recovery Time
HLD select	High Load Detection Select
HMI	Human Machine Interface: An interface that permits interaction between a human and a machine, such as a display and keyboard.

GLOSSARY

Acronym/Term	Definition
H0A	Hand/Off/Automatic switching: A three-terminal power semiconductor device used as an electronic switch to synthesize complex waveforms with pulse-width modulation in a variable-frequency drive (VFD).
IGBT	Insulated Gate Bipolar Transistor
inHG	inches of Mercury: Unit of measure for pressure
inWC	inches of Water Column: Unit of measure for pressure
IP	International Protection rating: Used as protection measures for motors, electrical devices and motors.
IPO Check Time	Input Phase Open Check Time
kPa	kilo-pascals: Unit of measure for pressure
LD Set Point	Low Demand Setpoint
LDT	Load Detection Trip
LPM	liters per minute
LV	Level
LvX Auto Reset	Low Voltage eXtension of faults Auto Reset
Main PT On	Main Pressure Transducer On
Max IPF Time	Max Instantaneous Power Failure Time
mBar	milli-Bar: Unit of measure for pressure
MCCB	Molded Case Circuit Breaker: An MCCB provides protection by combining a temperature sensitive device with a current sensitive electromagnetic device.
MII	Multi-function Input \#1
MMC Mode	Multi-Motor Control Mode
MMS	Manual Motor Starter: An electromechanical protection device used to switch motors ON/OFF manually and to provide fuseless protection against short-circuit, overload and phase failures.
MOL	Motor Overload
Motor FLA	Motor Full Load Amps
Motor RPM	Motor Rotations Per Minute
NEC	National Electrical Code: A regionally adoptable standard for the safe installation of electrical wiring and equipment in the United States.
NEMA	National Electrical Manufacturer Association: The largest trade association of electrical equipment manufacturers in the United States. NEMA publishes more than 700 standards for electrical enclosures, motors and magnet wire, AC plugs and receptacles, etc.
OCA/OCN ACC/DEC	Over Current during Acceleration / Over Current during Normal Running Acceleration Time / Deceleration Time
OCA Level	Over Current during Acceleration Level
OCN Level	Over Current during Normal running Level
OH Warning	Over Heat Warning
OL-2 Type	Over Load \#2 type
OPO Trip	Output Phase Open Trip
OV Stall Level	Over Voltage Stall Level
P-Leak Alarm	Pipe Leak Alarm
PFC	Power Factor Correction
PID	Proportional Integral Derivative: A control loop feedback mechanism used in applications requiring continuously modulated control.
PID F/B	PID Feedback
PLC	Programmable Logic Controller: A digital computer used for automation of typically industrial electromechanical processes.
PM Rotating	Permanent Magnet Motor with Rotation
PM-IPM	Permanent Magnet: Internal Permanent Magnet

Acronym/Term	Definition
PM-SPM	Permanent Magnet: Surface Permanent Magnet
PMA	Pump and Motor Assembly
PSC	Permanent Split Capacitor
PSI	Pounds per square inch
PWM	Pulse Width Modulation: A modulation technique used to control the power supplied to electrical devices, especially for motor speed control.
RC3	Relay \#3 - C terminal: from parameter translations
RA3	Relay \#3 - A terminal: from parameter translations
Relay NO/NC	Relay Normally Open/Normally Closed
REV	reverse
RFI	Radio Frequency Interference: A disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction.
RMS	Root Mean Square: Refers to the most common mathematical method of defining the effective voltage or current of an $A C$ wave.
RTU	Remote Terminal Unit: A Modbus RS-485 connection following a simple client-server model.
S-Boost Timer	Sleep Boost Timer
S-Boost Value	Sleep Boost Value
S-Bump Timer	Sleep Bump Timer
S-Clean Timer	Screen Clean Timer
SCM1	ST01 Common
SCR	Screen
SFA	Service Factor Amperes: The amount of a periodic overload at which a motor can operate without overload or damage.
SG+	Signal + : for RS485 communication
SG-	Signal - : for RS485 communication
SGND	Signal Ground: Reference for SG+ and SG-
Spare PT On	Spare Pressure Transducer On
Spd Search Gain	Speed Search Gain
SS Current Lmt	Speed Search Current Limit
ST01	Safe Torque Off - Safety Level 1
SVC	Sensorless Vector Control
TDH	Total Dynamic Head: The total equivalent height that a fluid is to be pumped, taking into account friction losses in the pipe.
Up/Down DI	Up/Down Digital Input
ULD Level	Underload Detection Level
ULD Select	Underload Detection Select
VAC	Voltage Alternating Current
VDC	Voltage Direct Current
V/F	Volts/Frequency
VF	Volt/Frequency
VFD	Variable Frequency Drive: A type of adjustable-speed drive used in electro-mechanical drive systems to control AC motor speed and torque by varying motor input frequency and voltage.
XCEL-L	Acceleration/Deceleration (Accel/Decel) - Low bit
XCEL-M	Acceleration/Deceleration (Accel/Decel) - Mid bit

STANDARD LIMITED WARRANTY

Except as set forth in an Extended Warranty, for one (1) year from the date of installation, but in no event more than two (2) years from the date of manufacture, Franklin hereby warrants to the purchaser ("Purchaser") of Franklin's products that, for the applicable warranty period, the products purchased will (i) be free from defects in workmanship and material at the time of shipment, (ii) perform consistently with samples previously supplied and (iii) conform to the specifications published or agreed to in writing between the purchaser and Franklin. This limited warranty extends only to products purchased directly from Franklin. If a product is purchased other than from a distributor or directly from Franklin, such product must be installed by a Franklin Certified Installer for this limited warranty to apply. This limited warranty is not assignable or transferable to any subsequent purchaser or user.
a. THIS LIMITED WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, WRITTEN OR ORAL, STATUTORY, EXPRESS, OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. PURCHASER'S SOLE AND EXCLUSIVE REMEDY FOR FRANKLIN'S BREACH OF ITS OBLIGATIONS HEREUNDER, INCLUDING BREACH OF ANY EXPRESS OR IMPLIED WARRANTY OR OTHERWISE, UNLESS PROVIDED ON THE FACE HEREOF OR IN A WRITTEN INSTRUMENT MADE PART OF THIS LIMITED WARRANTY, SHALL BE FOR THE PURCHASE PRICE PAID TO FRANKLIN FOR THE NONCONFORMING OR DEFECTIVE PRODUCT OR FOR THE REPAIR OR REPLACEMENT OF NONCONFORMING OR DEFECTIVE PRODUCT, AT FRANKLIN'S ELECTION. ANY FRANKLIN PRODUCT WHICH FRANKLIN DETERMINES TO BE DEFECTIVE WITHIN THE WARRANTY PERIOD SHALL BE, AT FRANKLIN'S SOLE OPTION, REPAIRED, REPLACED, OR A REFUND OF THE PURCHASE PRICE PAID. Some states do not allow limitations on how long an implied warranty lasts, therefore, the limitations and exclusions relating to the products may not apply.
b. WITHOUT LIMITING THE GENERALITY OF THE EXCLUSIONS OF THIS LIMITED WARRANTY, FRANKLIN SHALL NOT BE LIABLE TO THE PURCHASER OR ANY THIRD PARTY FOR ANY AND ALL (i) INCIDENTAL EXPENSES OR OTHER CHARGES, COSTS, EXPENSES (INCLUDING COSTS OF INSPECTION, TESTING, STORAGE, OR TRANSPORTATION) OR (ii) DAMAGES, INCLUDING CONSEQUENTIAL, SPECIAL DAMAGES, PUNITIVE OR INDIRECT DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS, LOST TIME AND LOST BUSINESS OPPORTUNITIES, REGARDLESS OF WHETHER FRANKLIN IS OR IS SHOWN TO BE AT FAULT, AND REGARDLESS OF WHETHER THERE IS OR THERE IS SHOWN TO HAVE BEEN A DEFECT IN MATERIALS OR WORKMANSHIP, NEGLIGENCE IN MANUFACTURE OR DESIGN, OR A FAILURE TO WARN.
c. Franklin's liability arising out of the sale or delivery of its products, or their use, whether based upon warranty contract, negligence, or otherwise, shall not in any case exceed the cost of repair or replacement of the product and, upon expiration of any applicable warranty period, any and all such liability shall terminate.
d. Without limiting the generality of the exclusions of this limited warranty, Franklin does not warrant the adequacy of any specifications provided directly or indirectly by a purchaser or that Franklin's products will perform in accordance with such specifications. This limited warranty does not apply to any products that have been subject to misuse (including use in a manner inconsistent with the design of the product), abuse, neglect, accident or improper installation or maintenance, or to products that have been altered or repaired by any person or entity other than Franklin or its authorized representatives.
e. Unless otherwise specified in an Extended Warranty authorized by Franklin for a specific product or product line, this limited warranty does not apply to performance caused by abrasive materials, corrosion due to aggressive conditions or improper voltage supply.

For technical assistance, parts, or repair, please contact:
800.348.2420 | franklin-electric.com

[^0]: * For frames sizes D, E, \& F, install a metal separator between side-by-side drives. Barrier depth must match the VFD depth.

